SkPath Reference

Path

Path contains Lines and Curves which can be stroked or filled. Contour is composed of a series of connected Lines and Curves. Path may contain zero, one, or more Contours. Each Line and Curve are described by Verb, Points, and optional Conic Weight.

Each pair of connected Lines and Curves share common Point; for instance, Path containing two connected Lines are described the Verb sequence: SkPath::kMove Verb, SkPath::kLine Verb, SkPath::kLine Verb; and a Point sequence with three entries, sharing the middle entry as the end of the first Line and the start of the second Line.

Path components Arc, Rect, Round Rect, Circle, and Oval are composed of Lines and Curves with as many Verbs and Points required for an exact description. Once added to Path, these components may lose their identity; although Path can be inspected to determine if it describes a single Rect, Oval, Round Rect, and so on.

Example

Path contains three Contours: Line, Circle, and Quad. Line is stroked but not filled. Circle is stroked and filled; Circle stroke forms a loop. Quad is stroked and filled, but since it is not closed, Quad does not stroke a loop.

Path contains a Fill Type which determines whether overlapping Contours form fills or holes. Fill Type also determines whether area inside or outside Lines and Curves is filled.

Example

Path is drawn filled, then stroked, then stroked and filled.

Path contents are never shared. Copying Path by value effectively creates a new Path independent of the original. Internally, the copy does not duplicate its contents until it is edited, to reduce memory use and improve performance.

Subtopics

topics description

Contour

Contour contains one or more Verbs, and as many Points as are required to satisfy Verb Array. First Verb in Path is always SkPath::kMove Verb; each SkPath::kMove Verb that follows starts a new Contour.

Example

Each SkPath::moveTo starts a new Contour, and content after SkPath::close() also starts a new Contour. Since SkPath::conicTo is not preceded by SkPath::moveTo, the first Point of the third Contour starts at the last Point of the second Contour.

If final Verb in Contour is SkPath::kClose Verb, Line connects Last Point in Contour with first Point. A closed Contour, stroked, draws Paint Stroke Join at Last Point and first Point. Without SkPath::kClose Verb as final Verb, Last Point and first Point are not connected; Contour remains open. An open Contour, stroked, draws Paint Stroke Cap at Last Point and first Point.

Example

Path is drawn stroked, with an open Contour and a closed Contour.

Zero Length

Contour length is distance traveled from first Point to Last Point, plus, if Contour is closed, distance from Last Point to first Point. Even if Contour length is zero, stroked Lines are drawn if Paint Stroke Cap makes them visible.

Example

Class SkPath

Paths contain geometry. Paths may be empty, or contain one or more Verbs that outline a figure. Path always starts with a move verb to a Cartesian coordinate, and may be followed by additional verbs that add lines or curves. Adding a close verb makes the geometry into a continuous loop, a closed contour. Paths may contain any number of contours, each beginning with a move verb.

Path contours may contain only a move verb, or may also contain lines, Quadratic Beziers, Conics, and Cubic Beziers. Path contours may be open or closed.

When used to draw a filled area, Path describes whether the fill is inside or outside the geometry. Path also describes the winding rule used to fill overlapping contours.

Internally, Path lazily computes metrics likes bounds and convexity. Call SkPath::updateBoundsCache to make Path thread safe.

Overview

Constants

constants description
AddPathMode Sets addPath options.
ArcSize Used by arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep, SkScalar x, SkScalar y).
Convexity Returns if Path is convex or concave.
Direction Sets Contour clockwise or counterclockwise.
FillType Sets winding rule and inverse fill.
SegmentMask Verb

Classes and Structs

class or struct description
Iter Iterates through lines and curves, skipping degenerates.
RawIter Iterates through lines and curves, including degenerates.

Constructors

description
SkPath() Constructs with default values.
SkPath(const SkPath& path) Makes a shallow copy.
Decreases Reference Count of owned objects.

Operators

operator description
operator=(const SkPath& path) Makes a shallow copy.
operator==(const SkPath& a, const SkPath& b) Compares paths for equality.
operator!=(const SkPath& a, const SkPath& b) Compares paths for inequality.

Member Functions

function description
ConvertConicToQuads Approximates Conic with Quad array.
ConvertToNonInverseFillType Returns Fill Type representing inside geometry.
IsCubicDegenerate Returns if Cubic is very small.
IsInverseFillType Returns if Fill Type represents outside geometry.
IsLineDegenerate Returns if Line is very small.
IsQuadDegenerate Returns if Quad is very small.
addArc Adds one Contour containing Arc.
addCircle Adds one Contour containing Circle.
addOval Adds one Contour containing Oval.
addPath Adds contents of Path.
addPoly Adds one Contour containing connected lines.
addRRect Adds one Contour containing Round Rect.
addRect Adds one Contour containing Rect.
addRoundRect Adds one Contour containing Round Rect with common corner radii.
arcTo Appends Arc.
close Makes last Contour a loop.
computeTightBounds Returns extent of geometry.
conicTo Appends Conic.
conservativelyContainsRect Returns true if Rect may be inside.
contains Returns if Point is in fill area.
countPoints Returns Point Array length.
countVerbs Returns Verb Array length.
cubicTo Appends Cubic.
dump Sends text representation using floats to standard output.
dumpHex Sends text representation using hexadecimal to standard output.
getBounds Returns maximum and minimum of Point Array.
getConvexity Returns geometry convexity, computing if necessary.
getConvexityOrUnknown Returns geometry convexity if known.
getFillType Returns Fill Type: winding, even-odd, inverse.
getGenerationID Returns unique ID.
getLastPt Returns Last Point.
getPoint Returns entry from Point Array.
getPoints Returns Point Array.
getSegmentMasks Returns types in Verb Array.
getVerbs Returns Verb Array.
incReserve Hint to reserve space for additional data.
interpolate Interpolates between Path pair.
isConvex Returns if geometry is convex.
isEmpty Returns if verb count is zero.
isFinite Returns if all Point values are finite.
isInterpolatable Returns if pair contains equal counts of Verb Array and Weights.
isInverseFillType Returns if Fill Type fills outside geometry.
isLastContourClosed Returns if final Contour forms a loop.
isLine Returns if describes Line.
isNestedFillRects Returns if describes Rect pair, one inside the other.
isOval Returns if describes Oval.
isRRect Returns if describes Round Rect.
isRect Returns if describes Rect.
isValid Returns if data is internally consistent.
isVolatile Returns if Device should not cache.
lineTo Appends Line.
moveTo Starts Contour.
offset Translates Point Array.
quadTo Appends Quad.
rArcTo Appends Arc relative to Last Point.
rConicTo Appends Conic relative to Last Point.
rCubicTo Appends Cubic relative to Last Point.
rLineTo Appends Line relative to Last Point.
rMoveTo Starts Contour relative to Last Point.
rQuadTo Appends Quad relative to Last Point.
readFromMemory Initializes from buffer.
reset Removes Verb Array, Point Array, and Weights; frees memory.
reverseAddPath Adds contents of Path back to front.
rewind Removes Verb Array, Point Array, and Weights; leaves memory allocated.
serialize Copies data to buffer.
setConvexity Sets if geometry is convex to avoid future computation.
setFillType Sets Fill Type: winding, even-odd, inverse.
setIsConvex Deprecated.
setIsVolatile Sets if Device should not cache.
setLastPt Replaces Last Point.
swap Exchanges Path pair.
toggleInverseFillType Toggles Fill Type between inside and outside geometry.
transform Applies Matrix to Point Array and Weights.
unique Returns if data has single owner.
updateBoundsCache Refreshes result of getBounds.
writeToMemory Copies data to buffer.

Verb

Enum SkPath::Verb

enum Verb {
kMove Verb, 
kLine Verb, 
kQuad Verb, 
kConic Verb, 
kCubic Verb, 
kClose Verb, 
kDone Verb, 
};

Verb instructs Path how to interpret one or more Point and optional Conic Weight; manage Contour, and terminate Path.

Constants

Each Verb has zero or more Points stored in Path. Path iterator returns complete curve descriptions, duplicating shared Points for consecutive entries.
SkPath::kMove_Verb 0Starts new Contour at next Point.
SkPath::kLine_Verb 1Adds Line from Last Point to next Point. Line is a straight segment from Point to Point.
SkPath::kQuad_Verb 2Adds Quad from Last Point, using control Point, and end Point. Quad is a parabolic section within tangents from Last Point to control Point, and control Point to end Point.
SkPath::kConic_Verb 3Adds Conic from Last Point, using control Point, end Point, and Conic Weight. Conic is a elliptical, parabolic, or hyperbolic section within tangents from Last Point to control Point, and control Point to end Point, constrained by Conic Weight. Conic Weight less than one is elliptical; equal to one is parabolic (and identical to Quad); greater than one hyperbolic.
SkPath::kCubic_Verb 4Adds Cubic from Last Point, using two control Points, and end Point. Cubic is a third-order Bezier section within tangents from Last Point to first control Point, and from second control Point to end Point.
SkPath::kClose_Verb 5Closes Contour, connecting Last Point to kMove Verb Point.
SkPath::kDone_Verb 6Terminates Path. Not in Verb Array, but returned by Path iterator.
Verb Allocated Points Iterated Points Weights
kMove Verb 1 1 0
kLine Verb 1 2 0
kQuad Verb 2 3 0
kConic Verb 2 3 1
kCubic Verb 3 4 0
kClose Verb 0 1 0
kDone Verb 0 0

Example

#### Example Output ~~~~ verb count: 7 verbs: kMove_Verb kLine_Verb kQuad_Verb kClose_Verb kMove_Verb kCubic_Verb kConic_Verb ~~~~

Direction

Enum SkPath::Direction

enum Direction {
kCW Direction, 
kCCW Direction, 
};

Direction describes whether Contour is clockwise or counterclockwise. When Path contains multiple overlapping Contours, Direction together with Fill Type determines whether overlaps are filled or form holes.

Direction also determines how Contour is measured. For instance, dashing measures along Path to determine where to start and stop stroke; Direction will change dashed results as it steps clockwise or counterclockwise.

Closed Contours like Rect, Round Rect, Circle, and Oval added with kCW Direction travel clockwise; the same added with kCCW Direction travel counterclockwise.

Constants

SkPath::kCW_Direction 0Contour travels in a clockwise direction.
SkPath::kCCW_Direction 1Contour travels in a counterclockwise direction.

Example

See Also

arcTo rArcTo isRect isNestedFillRects addRect addOval

SkPath

SkPath()

By default, Path has no Verbs, no Points, and no Weights. Fill Type is set to kWinding FillType.

Return Value

empty Path

Example

#### Example Output ~~~~ path is empty ~~~~

See Also

reset rewind


SkPath

SkPath(const SkPath& path)

Copy constructor makes two paths identical by value. Internally, path and the returned result share pointer values. The underlying Verb Array, Point Array and Weights are copied when modified.

Creating a Path copy is very efficient and never allocates memory. Paths are always copied by value from the interface; the underlying shared pointers are not exposed.

Parameters

path Path to copy by value

Return Value

copy of Path

Example

Modifying one path does not effect another, even if they started as copies of each other.

Example Output

path verbs: 2
path2 verbs: 3
after reset
path verbs: 0
path2 verbs: 3

See Also

operator=(const SkPath& path)


~SkPath

~SkPath()

Releases ownership of any shared data and deletes data if Path is sole owner.

Example

delete calls Path Destructor, but copy of original in path2 is unaffected.

See Also

SkPath() SkPath(const SkPath& path) operator=(const SkPath& path)


operator=

SkPath& operator=(const SkPath& path)

Path assignment makes two paths identical by value. Internally, assignment shares pointer values. The underlying Verb Array, Point Array and Weights are copied when modified.

Copying Paths by assignment is very efficient and never allocates memory. Paths are always copied by value from the interface; the underlying shared pointers are not exposed.

Parameters

path Verb Array, Point Array, Weights, and Fill Type to copy

Return Value

Path copied by value

Example

#### Example Output ~~~~ path1 bounds = 10, 20, 30, 40 path2 bounds = 10, 20, 30, 40 ~~~~

See Also

swap SkPath(const SkPath& path)


operator==

bool operator==(const SkPath& a, const SkPath& b)

Compares a and b; returns true if Fill Type, Verb Array, Point Array, and Weights are equivalent.

Parameters

a Path to compare
b Path to compare

Return Value

true if Path pair are equivalent

Example

Rewind removes Verb Array but leaves storage; since storage is not compared, Path pair are equivalent.

Example Output

empty one == two
moveTo one != two
rewind one == two
reset one == two


operator!=

bool operator!=(const SkPath& a, const SkPath& b)

Compares a and b; returns true if Fill Type, Verb Array, Point Array, and Weights are not equivalent.

Parameters

a Path to compare
b Path to compare

Return Value

true if Path pair are not equivalent

Example

Path pair are equal though their convexity is not equal.

Example Output

empty one == two
addRect one == two
setConvexity one == two
convexity !=


isInterpolatable

bool isInterpolatable(const SkPath& compare) const

Return true if Paths contain equal Verbs and equal Weights. If Paths contain one or more Conics, the Weights must match.

conicTo may add different Verbs depending on Conic Weight, so it is not trivial to interpolate a pair of Paths containing Conics with different Conic Weight values.

Parameters

compare Path to compare

Return Value

true if Paths Verb Array and Weights are equivalent

Example

#### Example Output ~~~~ paths are interpolatable ~~~~

See Also

isInterpolatable


interpolate

bool interpolate(const SkPath& ending, SkScalar weight, SkPath* out) const

Interpolate between Paths with equal sized Point Arrays. Copy Verb Array and Weights to out, and set out Point Array to a weighted average of this Point Array and ending Point Array, using the formula: (this->points * weight) + ending->points * (1 - weight)weight is most useful when between zero (ending Point Array) and one (this Point Array); will work with values outside of this range.

interpolate returns false and leaves out unchanged if Point Array is not the same size as ending Point Array. Call isInterpolatable to check Path compatibility prior to calling interpolate.

Parameters

ending Point Array averaged with this Point Array
weight contribution of ending Point Array, and one minus contribution of this Point Array
out Path replaced by interpolated averages

Return Value

true if Paths contain same number of Points

Example

See Also

isInterpolatable


unique

bool unique() const

Return Value

true if Path has one owner


Fill Type

Enum SkPath::FillType

enum FillType {
kWinding FillType, 
kEvenOdd FillType, 
kInverseWinding FillType, 
kInverseEvenOdd FillType, 
};

Fill Type selects the rule used to fill Path. Path set to kWinding FillType fills if the sum of Contour edges is not zero, where clockwise edges add one, and counterclockwise edges subtract one. Path set to kEvenOdd FillType fills if the number of Contour edges is odd. Each Fill Type has an inverse variant that reverses the rule: kInverseWinding FillType fills where the sum of Contour edges is zero; kInverseEvenOdd FillType fills where the number of Contour edges is even.

Example

The top row has two clockwise rectangles. The second row has one clockwise and one counterclockwise rectangle. The even-odd variants draw the same. The winding variants draw the top rectangle overlap, which has a winding of 2, the same as the outer parts of the top rectangles, which have a winding of 1.

Constants

SkPath::kWinding_FillType 0Specifies fill as area is enclosed by a non-zero sum of Contour Directions.
SkPath::kEvenOdd_FillType 1Specifies fill as area enclosed by an odd number of Contours.
SkPath::kInverseWinding_FillType 2Specifies fill as area is enclosed by a zero sum of Contour Directions.
SkPath::kInverseEvenOdd_FillType 3Specifies fill as area enclosed by an even number of Contours.

Example

See Also

SkPaint::Style Direction getFillType setFillType

getFillType

FillType getFillType() const

Returns FillType, the rule used to fill Path. FillType of a new Path is kWinding FillType.

Return Value

one of: kWinding FillType, kEvenOdd FillType, kInverseWinding FillType, kInverseEvenOdd FillType

Example

#### Example Output ~~~~ default path fill type is kWinding_FillType ~~~~

See Also

FillType setFillType isInverseFillType


setFillType

void setFillType(FillType ft)

Sets FillType, the rule used to fill Path. While there is no check that ft is legal, values outside of FillType are not supported.

Parameters

ft one of: kWinding FillType, kEvenOdd FillType, kInverseWinding FillType, kInverseEvenOdd FillType

Example

If empty Path is set to inverse FillType, it fills all pixels.

See Also

FillType getFillType toggleInverseFillType


isInverseFillType

bool isInverseFillType() const

Returns if FillType describes area outside Path geometry. The inverse fill area extends indefinitely.

Return Value

true if FillType is kInverseWinding FillType or kInverseEvenOdd FillType

Example

#### Example Output ~~~~ default path fill type is inverse: false ~~~~

See Also

FillType getFillType setFillType toggleInverseFillType


toggleInverseFillType

void toggleInverseFillType()

Replace FillType with its inverse. The inverse of FillType describes the area unmodified by the original FillType.

FillType toggled FillType
kWinding FillType kInverseWinding FillType
kEvenOdd FillType kInverseEvenOdd FillType
kInverseWinding FillType kWinding FillType
kInverseEvenOdd FillType kEvenOdd FillType

Example

Path drawn normally and through its inverse touches every pixel once.

See Also

FillType getFillType setFillType isInverseFillType


Convexity

Enum SkPath::Convexity

enum Convexity : uint8_t {
kUnknown Convexity, 
kConvex Convexity,
kConcave Convexity, 
};

Path is convex if it contains one Contour and Contour loops no more than 360 degrees, and Contour angles all have same Direction. Convex Path may have better performance and require fewer resources on GPU Surface.

Path is concave when either at least one Direction change is clockwise and another is counterclockwise, or the sum of the changes in Direction is not 360 degrees.

Initially Path Convexity is kUnknown Convexity. Path Convexity is computed if needed by destination Surface.

Constants

SkPath::kUnknown_Convexity 0Indicates Convexity has not been determined.
SkPath::kConvex_Convexity 1Path has one Contour made of a simple geometry without indentations.
SkPath::kConcave_Convexity 2Path has more than one Contour, or a geometry with indentations.

Example

See Also

Contour Direction getConvexity getConvexityOrUnknown setConvexity isConvex

getConvexity

Convexity getConvexity() const

Computes Convexity if required, and returns stored value. Convexity is computed if stored value is kUnknown Convexity, or if Path has been altered since Convexity was computed or set.

Return Value

computed or stored Convexity

Example

See Also

Convexity Contour Direction getConvexityOrUnknown setConvexity isConvex


getConvexityOrUnknown

Convexity getConvexityOrUnknown() const

Returns last computed Convexity, or kUnknown Convexity if Path has been altered since Convexity was computed or set.

Return Value

stored Convexity

Example

Convexity is unknown unless getConvexity is called without a subsequent call that alters the path.

See Also

Convexity Contour Direction getConvexity setConvexity isConvex


setConvexity

void setConvexity(Convexity convexity)

Stores convexity so that it is later returned by getConvexity or getConvexityOrUnknown. convexity may differ from getConvexity, although setting an incorrect value may cause incorrect or inefficient drawing.

If convexity is kUnknown Convexity: getConvexity will compute Convexity, and getConvexityOrUnknown will return kUnknown Convexity.

If convexity is kConvex Convexity or kConcave Convexity, getConvexity and getConvexityOrUnknown will return convexity until the path is altered.

Parameters

convexity one of: kUnknown Convexity, kConvex Convexity, or kConcave Convexity

Example

See Also

Convexity Contour Direction getConvexity getConvexityOrUnknown isConvex


isConvex

bool isConvex() const

Computes Convexity if required, and returns true if value is kConvex Convexity. If setConvexity was called with kConvex Convexity or kConcave Convexity, and the path has not been altered, Convexity is not recomputed.

Return Value

true if Convexity stored or computed is kConvex Convexity

Example

Concave shape is erroneously considered convex after a forced call to setConvexity.

See Also

Convexity Contour Direction getConvexity getConvexityOrUnknown setConvexity


setIsConvex

void setIsConvex(bool isConvex)

Deprecated. Use setConvexity.

See Also

Convexity setConvexity getConvexity


isOval

bool isOval(SkRect* rect, Direction* dir = nullptr, unsigned* start = nullptr) const

Returns true if constructed by addCircle, addOval; and in some cases, addRoundRect, addRRect. Path constructed with conicTo or rConicTo will not return true though Path draws Oval.

rect receives bounds of Oval. dir receives Direction of Oval: kCW Direction if clockwise, kCCW Direction if counterclockwise. start receives start of Oval: 0 for top, 1 for right, 2 for bottom, 3 for left.

rect, dir, and start are unmodified if Oval is not found.

Triggers performance optimizations on some GPU Surface implementations.

Parameters

rect storage for bounding Rect of Oval; may be nullptr
dir storage for Direction; may be nullptr
start storage for start of Oval; may be nullptr

Return Value

true if Path was constructed by method that reduces to Oval

Example

See Also

Oval addCircle addOval


isRRect

bool isRRect(SkRRect* rrect, Direction* dir = nullptr, unsigned* start = nullptr) const

Returns true if constructed by addRoundRect, addRRect; and if construction is not empty, not Rect, and not Oval. Path constructed with other calls will not return true though Path draws Round Rect.

rrect receives bounds of Round Rect. dir receives Direction of Oval: kCW Direction if clockwise, kCCW Direction if counterclockwise. start receives start of Round Rect: 0 for top, 1 for right, 2 for bottom, 3 for left.

rrect, dir, and start are unmodified if Round Rect is not found.

Triggers performance optimizations on some GPU Surface implementations.

Parameters

rrect storage for bounding Rect of Round Rect; may be nullptr
dir storage for Direction; may be nullptr
start storage for start of Round Rect; may be nullptr

Return Value

true if Path contains only Round Rect

Example

Draw rounded rectangle and its bounds. Draw an arc indicating where the rounded rectangle starts and its direction.

See Also

Round Rect addRoundRect addRRect


reset

void reset()

Sets Path to its initial state. Removes Verb Array, Point Array, and Weights, and sets FillType to kWinding FillType. Internal storage associated with Path is released.

Example

See Also

rewind


rewind

void rewind()

Sets Path to its initial state, preserving internal storage. Removes Verb Array, Point Array, and Weights, and sets FillType to kWinding FillType. Internal storage associated with Path is retained.

Use rewind instead of reset if Path storage will be reused and performance is critical.

Example

Although path1 retains its internal storage, it is indistinguishable from a newly initialized path.

See Also

reset


isEmpty

bool isEmpty() const

Empty Path may have FillType but has no SkPoint, Verb, or Conic Weight. SkPath() constructs empty Path; reset and (rewind) make Path empty.

Return Value

true if the path contains no Verb array

Example

#### Example Output ~~~~ initial path is empty after moveTo path is not empty after rewind path is empty after lineTo path is not empty after reset path is empty ~~~~

See Also

SkPath() reset rewind


isLastContourClosed

bool isLastContourClosed() const

Contour is closed if Path Verb array was last modified by close. When stroked, closed Contour draws Paint Stroke Join instead of Paint Stroke Cap at first and last Point.

Return Value

true if the last Contour ends with a kClose Verb

Example

close has no effect if Path is empty; isLastContourClosed returns false until Path has geometry followed by close.

Example Output

initial last contour is not closed
after close last contour is not closed
after lineTo last contour is not closed
after close last contour is closed

See Also

close


isFinite

bool isFinite() const

Returns true for finite Point array values between negative SK ScalarMax and positive SK ScalarMax. Returns false for any Point array value of SK ScalarInfinity, SK ScalarNegativeInfinity, or SK ScalarNaN.

Return Value

true if all Point values are finite

Example

#### Example Output ~~~~ initial path is finite after line path is finite after scale path is not finite ~~~~

See Also

SkScalar


isVolatile

bool isVolatile() const

Returns true if the path is volatile; it will not be altered or discarded by the caller after it is drawn. Paths by default have volatile set false, allowing Surface to attach a cache of data which speeds repeated drawing. If true, Surface may not speed repeated drawing.

Return Value

true if caller will alter Path after drawing

Example

#### Example Output ~~~~ volatile by default is false ~~~~

See Also

setIsVolatile


setIsVolatile

void setIsVolatile(bool isVolatile)

Specify whether Path is volatile; whether it will be altered or discarded by the caller after it is drawn. Paths by default have volatile set false, allowing Device to attach a cache of data which speeds repeated drawing.

Mark temporary paths, discarded or modified after use, as volatile to inform Device that the path need not be cached.

Mark animating Path volatile to improve performance. Mark unchanging Path non-volatile to improve repeated rendering.

Raster Surface Path draws are affected by volatile for some shadows. GPU Surface Path draws are affected by volatile for some shadows and concave geometries.

Parameters

isVolatile true if caller will alter Path after drawing

Example

See Also

isVolatile


IsLineDegenerate

static bool IsLineDegenerate(const SkPoint& p1, const SkPoint& p2, bool exact)

Test if Line between Point pair is degenerate. Line with no length or that moves a very short distance is degenerate; it is treated as a point.

exact changes the equality test. If true, returns true only if p1 equals p2. If false, returns true if p1 equals or nearly equals p2.

Parameters

p1 line start point
p2 line end point
exact if false, allow nearly equals

Return Value

true if Line is degenerate; its length is effectively zero

Example

As single precision floats, 100 and 100.000001 have the same bit representation, and are exactly equal. 100 and 100.0001 have different bit representations, and are not exactly equal, but are nearly equal.

Example Output

line from (100,100) to (100,100) is degenerate, nearly
line from (100,100) to (100,100) is degenerate, exactly
line from (100,100) to (100.0001,100.0001) is degenerate, nearly
line from (100,100) to (100.0001,100.0001) is not degenerate, exactly

See Also

IsQuadDegenerate IsCubicDegenerate SkPoint::equalsWithinTolerance


IsQuadDegenerate

static bool IsQuadDegenerate(const SkPoint& p1, const SkPoint& p2,
                             const SkPoint& p3, bool exact)

Test if Quad is degenerate. Quad with no length or that moves a very short distance is degenerate; it is treated as a point.

Parameters

p1 Quad start point
p2 Quad control point
p3 Quad end point
exact if true, returns true only if p1, p2, and p3 are equal; if false, returns true if p1, p2, and p3 are equal or nearly equal

Return Value

true if Quad is degenerate; its length is effectively zero

Example

As single precision floats: 100, 100.00001, and 100.00002 have different bit representations but nearly the same value. Translating all three by 1000 gives them the same bit representation; the fractional portion of the number can not be represented by the float and is lost.

Example Output

quad (100,100), (100.00001,100.00001), (100.00002,100.00002) is degenerate, nearly
quad (1100,1100), (1100,1100), (1100,1100) is degenerate, nearly
quad (100,100), (100.00001,100.00001), (100.00002,100.00002) is not degenerate, exactly
quad (1100,1100), (1100,1100), (1100,1100) is degenerate, exactly

See Also

IsLineDegenerate IsCubicDegenerate SkPoint::equalsWithinTolerance


IsCubicDegenerate

static bool IsCubicDegenerate(const SkPoint& p1, const SkPoint& p2,
                              const SkPoint& p3, const SkPoint& p4, bool exact)

Test if Cubic is degenerate. Cubic with no length or that moves a very short distance is degenerate; it is treated as a point.

Parameters

p1 Cubic start point
p2 Cubic control point 1
p3 Cubic control point 2
p4 Cubic end point
exact if true, returns true only if p1, p2, p3, and p4 are equal; if false, returns true if p1, p2, p3, and p4 are equal or nearly equal

Return Value

true if Cubic is degenerate; its length is effectively zero

Example

#### Example Output ~~~~ 0.00024414062 is degenerate 0.00024414065 is length ~~~~

isLine

bool isLine(SkPoint line[2]) const

Returns true if Path contains only one Line; Path Verb array has two entries: kMove Verb, kLine Verb. If Path contains one Line and line is not nullptr, line is set to Line start point and Line end point. Returns false if Path is not one Line; line is unaltered.

Parameters

line storage for Line. May be nullptr

Return Value

true if Path contains exactly one Line

Example

#### Example Output ~~~~ empty is not line zero line is line (0,0) (0,0) line is line (10,10) (20,20) second move is not line ~~~~

Point Array

Point Array contains Points satisfying the allocated Points for each Verb in Verb Array. For instance, Path containing one Contour with Line and Quad is described by Verb Array: Verb::kMoveTo, Verb::kLineTo, Verb::kQuadTo; and one Point for move, one Point for Line, two Points for Quad; totaling four Points.

Point Array may be read directly from Path with getPoints, or inspected with getPoint, with Iter, or with RawIter.

getPoints

int getPoints(SkPoint points[], int max) const

Returns number of points in Path. Up to max points are copied. points may be nullptr; then, max must be zero. If max is greater than number of points, excess points storage is unaltered.

Parameters

points storage for Path Point array. May be nullptr
max maximum to copy; must be greater than or equal to zero

Return Value

Path Point array length

Example

#### Example Output ~~~~ no points point count: 3 zero max point count: 3 too small point count: 3 (0,0) (20,20) just right point count: 3 (0,0) (20,20) (-10,-10) ~~~~

See Also

countPoints getPoint


countPoints

int countPoints() const

Returns the number of points in Path. Point count is initially zero.

Return Value

Path Point array length

Example

#### Example Output ~~~~ empty point count: 0 zero line point count: 2 line point count: 2 second move point count: 3 ~~~~

See Also

getPoints


getPoint

SkPoint getPoint(int index) const

Returns Point at index in Point Array. Valid range for index is 0 to countPoints - 1. Returns (0, 0) if index is out of range.

Parameters

index Point array element selector

Return Value

Point array value or (0, 0)

Example

#### Example Output ~~~~ point 0: (-10,-10) point 1: (10,10) ~~~~

See Also

countPoints getPoints


Verb Array

Verb Array always starts with kMove Verb. If kClose Verb is not the last entry, it is always followed by kMove Verb; the quantity of kMove Verb equals the Contour count. Verb Array does not include or count kDone Verb; it is a convenience returned when iterating through Verb Array.

Verb Array may be read directly from Path with getVerbs, or inspected with Iter, or with RawIter.

countVerbs

int countVerbs() const

Returns the number of Verbs: kMove Verb, kLine Verb, kQuad Verb, kConic Verb, kCubic Verb, and kClose Verb; added to Path.

Return Value

length of Verb Array

Example

#### Example Output ~~~~ empty verb count: 0 round rect verb count: 10 ~~~~

See Also

getVerbs Iter RawIter


getVerbs

int getVerbs(uint8_t verbs[], int max) const

Returns the number of verbs in the path. Up to max verbs are copied. The verbs are copied as one byte per verb.

Parameters

verbs storage for verbs, may be nullptr
max maximum number to copy into verbs

Return Value

the actual number of verbs in the path

Example

#### Example Output ~~~~ no verbs verb count: 3 zero max verb count: 3 too small verb count: 3 move line just right verb count: 3 move line line ~~~~

See Also

countVerbs getPoints Iter RawIter


swap

void swap(SkPath& other)

Exchanges the Verb Array, Point Array, Weights, and Fill Type with other. Cached state is also exchanged. swap internally exchanges pointers, so it is lightweight and does not allocate memory.

swap usage has largely been replaced by operator=(const SkPath& path). Paths do not copy their content on assignment until they are written to, making assignment as efficient as swap.

Parameters

other Path exchanged by value

Example

#### Example Output ~~~~ path1 bounds = 0, 0, 0, 0 path2 bounds = 10, 20, 30, 40 ~~~~

See Also

operator=(const SkPath& path)


getBounds

const SkRect& getBounds() const

Returns minimum and maximum x and y values of Point Array. Returns (0, 0, 0, 0) if Path contains no points. Returned bounds width and height may be larger or smaller than area affected when Path is drawn.

Rect returned includes all Points added to Path, including Points associated with kMove Verb that define empty Contours.

Return Value

bounds of all Points in Point Array

Example

Bounds of upright Circle can be predicted from center and radius. Bounds of rotated Circle includes control Points outside of filled area.

Example Output

empty bounds = 0, 0, 0, 0
circle bounds = 25, 20, 75, 70
rotated circle bounds = 14.6447, 9.64466, 85.3553, 80.3553

See Also

computeTightBounds updateBoundsCache


updateBoundsCache

void updateBoundsCache() const

Update internal bounds so that subsequent calls to getBounds are instantaneous. Unaltered copies of Path may also access cached bounds through getBounds.

For now, identical to calling getBounds and ignoring the returned value.

Call to prepare Path subsequently drawn from multiple threads, to avoid a race condition where each draw separately computes the bounds.

Example

#### Example Output ~~~~ #Volatile uncached avg: 0.18048 ms cached avg: 0.182784 ms ~~~~

See Also

getBounds


computeTightBounds

SkRect computeTightBounds() const

Returns minimum and maximum x and y values of the lines and curves in Path. Returns (0, 0, 0, 0) if Path contains no points. Returned bounds width and height may be larger or smaller than area affected when Path is drawn.

Includes Points associated with kMove Verb that define empty Contours.

Behaves identically to getBounds when Path contains only lines. If Path contains curves, computed bounds includes the maximum extent of the Quad, Conic, or Cubic; is slower than getBounds; and unlike getBounds, does not cache the result.

Return Value

tight bounds of curves in Path

Example

#### Example Output ~~~~ empty bounds = 0, 0, 0, 0 circle bounds = 25, 20, 75, 70 rotated circle bounds = 25, 20, 75, 70 ~~~~

See Also

getBounds


conservativelyContainsRect

bool conservativelyContainsRect(const SkRect& rect) const

Returns true if rect is contained by Path. May return false when rect is contained by Path.

For now, only returns true if Path has one Contour and is convex. rect may share points and edges with Path and be contained. Returns true if rect is empty, that is, it has zero width or height; and the Point or Line described by rect is contained by Path.

Parameters

rect Rect, Line, or Point checked for containment

Return Value

true if rect is contained

Example

Rect is drawn in blue if it is contained by red Path.

See Also

contains Op Rect Convexity


incReserve

void incReserve(unsigned extraPtCount)

grows Path Verb Array and Point Array to contain extraPtCount additional Points. May improve performance and use less memory by reducing the number and size of allocations when creating Path.

Parameters

extraPtCount number of additional Points to allocate

Example

See Also

Point Array


moveTo

void moveTo(SkScalar x, SkScalar y)

Adds beginning of Contour at Point (x, y).

Parameters

x x-coordinate of Contour start
y y-coordinate of Contour start

Example

See Also

Contour lineTo rMoveTo quadTo conicTo cubicTo close


void moveTo(const SkPoint& p)

Adds beginning of Contour at Point p.

Parameters

p contour start

Example

See Also

Contour lineTo rMoveTo quadTo conicTo cubicTo close


rMoveTo

void rMoveTo(SkScalar dx, SkScalar dy)

Adds beginning of Contour relative to Last Point. If Path is empty, starts Contour at (dx, dy). Otherwise, start Contour at Last Point offset by (dx, dy). Function name stands for “relative move to”.

Parameters

dx offset from Last Point x to Contour start x
dy offset from Last Point y to Contour start y

Example

See Also

Contour lineTo moveTo quadTo conicTo cubicTo close


lineTo

void lineTo(SkScalar x, SkScalar y)

Adds Line from Last Point to (x, y). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Line.

lineTo appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed. lineTo then appends kLine Verb to Verb Array and (x, y) to Point Array.

Parameters

x end of added Line in x
y end of added Line in y

Example

See Also

Contour moveTo rLineTo addRect


void lineTo(const SkPoint& p)

Adds Line from Last Point to Point p. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Line.

lineTo first appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed. lineTo then appends kLine Verb to Verb Array and Point p to Point Array.

Parameters

p end Point of added Line

Example

See Also

Contour moveTo rLineTo addRect


rLineTo

void rLineTo(SkScalar dx, SkScalar dy)

Adds Line from Last Point to Vector (dx, dy). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Line.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kLine Verb to Verb Array and Line end to Point Array. Line end is Last Point plus Vector (dx, dy). Function name stands for “relative line to”.

Parameters

dx offset from Last Point x to Line end x
dy offset from Last Point y to Line end y

Example

See Also

Contour moveTo lineTo addRect


Quad

Quad describes a quadratic Bezier, a second-order curve identical to a section of a parabola. Quad begins at a start Point, curves towards a control Point, and then curves to an end Point.

Example

Quad is a special case of Conic where Conic Weight is set to one.

Quad is always contained by the triangle connecting its three Points. Quad begins tangent to the line between start Point and control Point, and ends tangent to the line between control Point and end Point.

Example

quadTo

void quadTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2)

Adds Quad from Last Point towards (x1, y1), to (x2, y2). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Quad.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kQuad Verb to Verb Array; and (x1, y1), (x2, y2) to Point Array.

Parameters

x1 control Point of Quad in x
y1 control Point of Quad in y
x2 end Point of Quad in x
y2 end Point of Quad in y

Example

See Also

Contour moveTo conicTo rQuadTo


void quadTo(const SkPoint& p1, const SkPoint& p2)

Adds Quad from Last Point towards Point p1, to Point p2. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Quad.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kQuad Verb to Verb Array; and Points p1, p2 to Point Array.

Parameters

p1 control Point of added Quad
p2 end Point of added Quad

Example

See Also

Contour moveTo conicTo rQuadTo


rQuadTo

void rQuadTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2)

Adds Quad from Last Point towards Vector (dx1, dy1), to Vector (dx2, dy2). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Quad.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kQuad Verb to Verb Array; and appends Quad control and Quad end to Point Array. Quad control is Last Point plus Vector (dx1, dy1). Quad end is Last Point plus Vector (dx2, dy2). Function name stands for “relative quad to”.

Parameters

dx1 offset from Last Point x to Quad control x
dy1 offset from Last Point x to Quad control y
dx2 offset from Last Point x to Quad end x
dy2 offset from Last Point x to Quad end y

Example

See Also

Contour moveTo conicTo quadTo


Conic

Conic describes a conical section: a piece of an ellipse, or a piece of a parabola, or a piece of a hyperbola. Conic begins at a start Point, curves towards a control Point, and then curves to an end Point. The influence of the control Point is determined by Conic Weight.

Each Conic in Path adds two Points and one Conic Weight. Conic Weights in Path may be inspected with Iter, or with RawIter.

Weight

Weight determines both the strength of the control Point and the type of Conic. If Weight is exactly one, then Conic is identical to Quad; it is always a parabolic segment.

Example

When Conic Weight is one, Quad is added to path; the two are identical.

Example Output

move {0, 0},
quad {0, 0}, {20, 30}, {50, 60},
done

If weight is less than one, Conic is an elliptical segment.

Example

A 90 degree circular arc has the weight1 / sqrt(2).

Example Output

move {0, 0},
conic {0, 0}, {20, 0}, {20, 20}, weight = 0.707107
done

If weight is greater than one, Conic is a hyperbolic segment. As weight gets large, a hyperbolic segment can be approximated by straight lines connecting the control Point with the end Points.

Example

#### Example Output ~~~~ move {0, 0}, line {0, 0}, {20, 0}, line {20, 0}, {20, 20}, done ~~~~

conicTo

void conicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar w)

Adds Conic from Last Point towards (x1, y1), to (x2, y2), weighted by w. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Conic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed.

If w is finite and not one, appends kConic Verb to Verb Array; and (x1, y1), (x2, y2) to Point Array; and w to Conic Weights.

If w is one, appends kQuad Verb to Verb Array, and (x1, y1), (x2, y2) to Point Array.

If w is not finite, appends kLine Verb twice to Verb Array, and (x1, y1), (x2, y2) to Point Array.

Parameters

x1 control Point of Conic in x
y1 control Point of Conic in y
x2 end Point of Conic in x
y2 end Point of Conic in y
w weight of added Conic

Example

As weight increases, curve is pulled towards control point. The bottom two curves are elliptical; the next is parabolic; the top curve is hyperbolic.

See Also

rConicTo arcTo addArc quadTo


void conicTo(const SkPoint& p1, const SkPoint& p2, SkScalar w)

Adds Conic from Last Point towards Point p1, to Point p2, weighted by w. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Conic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed.

If w is finite and not one, appends kConic Verb to Verb Array; and Points p1, p2 to Point Array; and w to Conic Weights.

If w is one, appends kQuad Verb to Verb Array, and Points p1, p2 to Point Array.

If w is not finite, appends kLine Verb twice to Verb Array, and Points p1, p2 to Point Array.

Parameters

p1 control Point of added Conic
p2 end Point of added Conic
w weight of added Conic

Example

Conics and arcs use identical representations. As the arc sweep increases the Conic Weight also increases, but remains smaller than one.

See Also

rConicTo arcTo addArc quadTo


rConicTo

void rConicTo(SkScalar dx1, SkScalar dy1, SkScalar dx2, SkScalar dy2, SkScalar w)

Adds Conic from Last Point towards Vector (dx1, dy1), to Vector (dx2, dy2), weighted by w. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Conic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed. If w is finite and not one, next appends kConic Verb to Verb Array, and w is recorded as Conic Weight; otherwise, if w is one, appends kQuad Verb to Verb Array; or if w is not finite, appends kLine Verb twice to Verb Array.

In all cases appends Points control and end to Point Array. control is Last Point plus Vector (dx1, dy1). end is Last Point plus Vector (dx2, dy2).

Function name stands for “relative conic to”.

Parameters

dx1 offset from Last Point x to Conic control x
dy1 offset from Last Point x to Conic control y
dx2 offset from Last Point x to Conic end x
dy2 offset from Last Point x to Conic end y
w weight of added Conic

Example

See Also

conicTo arcTo addArc quadTo


Cubic

Cubic describes a Bezier curve segment described by a third-order polynomial. Cubic begins at a start Point, curving towards the first control Point; and curves from the end Point towards the second control Point.

Example

cubicTo

void cubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar x3,
             SkScalar y3)

Adds Cubic from Last Point towards (x1, y1), then towards (x2, y2), ending at (x3, y3). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Cubic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kCubic Verb to Verb Array; and (x1, y1), (x2, y2), (x3, y3) to Point Array.

Parameters

x1 first control Point of Cubic in x
y1 first control Point of Cubic in y
x2 second control Point of Cubic in x
y2 second control Point of Cubic in y
x3 end Point of Cubic in x
y3 end Point of Cubic in y

Example

See Also

Contour moveTo rCubicTo quadTo


void cubicTo(const SkPoint& p1, const SkPoint& p2, const SkPoint& p3)

Adds Cubic from Last Point towards Point p1, then towards Point p2, ending at Point p3. If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Cubic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kCubic Verb to Verb Array; and Points p1, p2, p3 to Point Array.

Parameters

p1 first control Point of Cubic
p2 second control Point of Cubic
p3 end Point of Cubic

Example

See Also

Contour moveTo rCubicTo quadTo


rCubicTo

void rCubicTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar x3,
              SkScalar y3)

Adds Cubic from Last Point towards Vector (dx1, dy1), then towards Vector (dx2, dy2), to Vector (dx3, dy3). If Path is empty, or last Verb is kClose Verb, Last Point is set to (0, 0) before adding Cubic.

Appends kMove Verb to Verb Array and (0, 0) to Point Array, if needed; then appends kCubic Verb to Verb Array; and appends Cubic control and Cubic end to Point Array. Cubic control is Last Point plus Vector (dx1, dy1). Cubic end is Last Point plus Vector (dx2, dy2). Function name stands for “relative cubic to”.

Parameters

x1 offset from Last Point x to first Cubic control x
y1 offset from Last Point x to first Cubic control y
x2 offset from Last Point x to second Cubic control x
y2 offset from Last Point x to second Cubic control y
x3 offset from Last Point x to Cubic end x
y3 offset from Last Point x to Cubic end y

Example

See Also

Contour moveTo cubicTo quadTo


Arc

Arc can be constructed in a number of ways. Arc may be described by part of Oval and angles, by start point and end point, and by radius and tangent lines. Each construction has advantages, and some constructions correspond to Arc drawing in graphics standards.

All Arc draws are implemented by one or more Conic draws. When Conic Weight is less than one, Conic describes an Arc of some Oval or Circle.

arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle, bool forceMoveTo) describes Arc as a piece of Oval, beginning at start angle, sweeping clockwise or counterclockwise, which may continue Contour or start a new one. This construction is similar to PostScript and HTML Canvas arcs. Variation addArc always starts new Contour. Canvas::drawArc draws without requiring Path.

arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius) describes Arc as tangent to the line (x0, y0), (x1, y1) and tangent to the line (x1, y1), (x2, y2) where (x0, y0) is the last Point added to Path. This construction is similar to PostScript and HTML Canvas arcs.

arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc, Direction sweep, SkScalar x, SkScalar y) describes Arc as part of Oval with radii (rx, ry), beginning at last Point added to Path and ending at (x, y). More than one Arc satisfies this criteria, so additional values choose a single solution. This construction is similar to SVG arcs.

conicTo describes Arc of less than 180 degrees as a pair of tangent lines and Conic Weight. conicTo can represent any Arc with a sweep less than 180 degrees at any rotation. All arcTo constructions are converted to Conic data when added to Path.

Example

Example

1 describes an arc from an oval, a starting angle, and a sweep angle. 2 is similar to 1, but does not require building a path to draw. 3 is similar to 1, but always begins new Contour. 4 describes an arc from a pair of tangent lines and a radius. 5 describes an arc from Oval center, arc start Point and arc end Point. 6 describes an arc from a pair of tangent lines and a Conic Weight.

arcTo

void arcTo(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle,
           bool forceMoveTo)

Append Arc to Path. Arc added is part of ellipse bounded by oval, from startAngle through sweepAngle. Both startAngle and sweepAngle are measured in degrees, where zero degrees is aligned with the positive x-axis, and positive sweeps extends Arc clockwise.

arcTo adds Line connecting Path last Point to initial Arc Point if forceMoveTo is false and Path is not empty. Otherwise, added Contour begins with first point of Arc. Angles greater than -360 and less than 360 are treated modulo 360.

Parameters

oval bounds of ellipse containing Arc
startAngle starting angle of Arc in degrees
sweepAngle sweep, in degrees. Positive is clockwise; treated modulo 360
forceMoveTo true to start a new contour with Arc

Example

arcTo continues a previous contour when forceMoveTo is false and when Path is not empty.

See Also

addArc SkCanvas::drawArc conicTo


void arcTo(SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2, SkScalar radius)

Append Arc to Path, after appending Line if needed. Arc is implemented by Conic weighted to describe part of Circle. Arc is contained by tangent from last Path point (x0, y0) to (x1, y1), and tangent from (x1, y1) to (x2, y2). Arc is part of Circle sized to radius, positioned so it touches both tangent lines.

Example

If last Path Point does not start Arc, arcTo appends connecting Line to Path. The length of Vector from (x1, y1) to (x2, y2) does not affect Arc.

Example

Arc sweep is always less than 180 degrees. If radius is zero, or if tangents are nearly parallel, arcTo appends Line from last Path Point to (x1, y1).

arcTo appends at most one Line and one Conic. arcTo implements the functionality of PostScript Arct and HTML Canvas ArcTo.

Parameters

x1 x common to pair of tangents
y1 y common to pair of tangents
x2 x end of second tangent
y2 y end of second tangent
radius distance from Arc to Circle center

Example

arcTo is represented by Line and circular Conic in Path.

Example Output

move to (156,20)
line (156,20),(79.2893,20)
conic (79.2893,20),(200,20),(114.645,105.355) weight 0.382683

See Also

conicTo


void arcTo(const SkPoint p1, const SkPoint p2, SkScalar radius)

Append Arc to Path, after appending Line if needed. Arc is implemented by Conic weighted to describe part of Circle. Arc is contained by tangent from last Path point to p1, and tangent from p1 to p2. Arc is part of Circle sized to radius, positioned so it touches both tangent lines.

If last Path Point does not start Arc, arcTo appends connecting Line to Path. The length of Vector from p1 to p2 does not affect Arc.

Arc sweep is always less than 180 degrees. If radius is zero, or if tangents are nearly parallel, arcTo appends Line from last Path Point to p1.

arcTo appends at most one Line and one Conic. arcTo implements the functionality of PostScript Arct and HTML Canvas ArcTo.

Parameters

p1 Point common to pair of tangents
p2 end of second tangent
radius distance from Arc to Circle center

Example

Because tangent lines are parallel, arcTo appends line from last Path Point to p1, but does not append a circular Conic.

Example Output

move to (156,20)
line (156,20),(200,20)

See Also

conicTo


Enum SkPath::ArcSize

enum ArcSize {
kSmall ArcSize, 
kLarge ArcSize, 
};

Four Oval parts with radii (rx, ry) start at last Path Point and ends at (x, y). ArcSize and Direction select one of the four Oval parts.

Constants

SkPath::kSmall_ArcSize 0Smaller of Arc pair.
SkPath::kLarge_ArcSize 1Larger of Arc pair.

Example

Arc begins at top of Oval pair and ends at bottom. Arc can take four routes to get there. Two routes are large, and two routes are counterclockwise. The one route both large and counterclockwise is blue.

See Also

arcTo Direction

void arcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
           Direction sweep, SkScalar x, SkScalar y)

Append Arc to Path. Arc is implemented by one or more Conics weighted to describe part of Oval with radii (rx, ry) rotated by xAxisRotate degrees. Arc curves from last Path Point to (x, y), choosing one of four possible routes: clockwise or counterclockwise, and smaller or larger.

Arc sweep is always less than 360 degrees. arcTo appends Line to (x, y) if either radii are zero, or if last Path Point equals (x, y). arcTo scales radii (rx, ry) to fit last Path Point and (x, y) if both are greater than zero but too small.

arcTo appends up to four Conic curves. arcTo implements the functionality of SVG Arc, although SVG “” value is opposite the integer value of sweep; SVG “” uses 1 for clockwise, while kCW Direction cast to int is zero.

Parameters

rx radius in x before x-axis rotation
ry radius in y before x-axis rotation
xAxisRotate x-axis rotation in degrees; positive values are clockwise
largeArc chooses smaller or larger Arc
sweep chooses clockwise or counterclockwise Arc
x end of Arc
y end of Arc

Example

See Also

rArcTo ArcSize Direction


void arcTo(const SkPoint r, SkScalar xAxisRotate, ArcSize largeArc,
           Direction sweep, const SkPoint xy)

Append Arc to Path. Arc is implemented by one or more Conic weighted to describe part of Oval with radii (r.fX, r.fY) rotated by xAxisRotate degrees. Arc curves from last Path Point to (xy.fX, xy.fY), choosing one of four possible routes: clockwise or counterclockwise, and smaller or larger.

Arc sweep is always less than 360 degrees. arcTo appends Line to xy if either radii are zero, or if last Path Point equals (x, y). arcTo scales radii r to fit last Path Point and xy if both are greater than zero but too small to describe an arc.

arcTo appends up to four Conic curves. arcTo implements the functionality of SVG Arc, although SVG “” value is opposite the integer value of sweep; SVG “” uses 1 for clockwise, while kCW Direction cast to int is zero.

Parameters

r radii in x and y before x-axis rotation
xAxisRotate x-axis rotation in degrees; positive values are clockwise
largeArc chooses smaller or larger Arc
sweep chooses clockwise or counterclockwise Arc
xy end of Arc

Example

See Also

rArcTo ArcSize Direction


rArcTo

void rArcTo(SkScalar rx, SkScalar ry, SkScalar xAxisRotate, ArcSize largeArc,
            Direction sweep, SkScalar dx, SkScalar dy)

Append Arc to Path, relative to last Path Point. Arc is implemented by one or more Conic, weighted to describe part of Oval with radii (rx, ry) rotated by xAxisRotate degrees. Arc curves from last Path Point (x0, y0) to end Point(x0 + dx, y0 + dy), choosing one of four possible routes: clockwise or counterclockwise, and smaller or larger. If Path is empty, the start Arc Point is (0, 0).

Arc sweep is always less than 360 degrees. arcTo appends Line to end Point if either radii are zero, or if last Path Point equals end Point. arcTo scales radii (rx, ry) to fit last Path Point and end Point if both are greater than zero but too small to describe an arc.

arcTo appends up to four Conic curves. arcTo implements the functionality of SVG Arc, although SVG “” value is opposite the integer value of sweep; SVG “” uses 1 for clockwise, while kCW Direction cast to int is zero.

Parameters

rx radius in x before x-axis rotation
ry radius in y before x-axis rotation
xAxisRotate x-axis rotation in degrees; positive values are clockwise
largeArc chooses smaller or larger Arc
sweep chooses clockwise or counterclockwise Arc
dx x offset end of Arc from last Path Point
dy y offset end of Arc from last Path Point

Example

See Also

arcTo ArcSize Direction


close

void close()

Append kClose Verb to Path. A closed Contour connects the first and last Point with Line, forming a continuous loop. Open and closed Contour draw the same with SkPaint::kFill Style. With SkPaint::kStroke Style, open Contour draws Paint Stroke Cap at Contour start and end; closed Contour draws Paint Stroke Join at Contour start and end.

close has no effect if Path is empty or last Path Verb is kClose Verb.

Example

See Also


IsInverseFillType

static bool IsInverseFillType(FillType fill)

Returns true if fill is inverted and Path with fill represents area outside of its geometric bounds.

FillType is inverse
kWinding FillType false
kEvenOdd FillType false
kInverseWinding FillType true
kInverseEvenOdd FillType true

Parameters

fill one of: kWinding FillType, kEvenOdd FillType, kInverseWinding FillType, kInverseEvenOdd FillType

Return Value

true if Path fills outside its bounds

Example

#### Example Output ~~~~ IsInverseFillType(kWinding_FillType) == false IsInverseFillType(kEvenOdd_FillType) == false IsInverseFillType(kInverseWinding_FillType) == true IsInverseFillType(kInverseEvenOdd_FillType) == true ~~~~

See Also

FillType getFillType setFillType ConvertToNonInverseFillType


ConvertToNonInverseFillType

static FillType ConvertToNonInverseFillType(FillType fill)

Returns equivalent Fill Type representing Path fill inside its bounds. .

FillType inside FillType
kWinding FillType kWinding FillType
kEvenOdd FillType kEvenOdd FillType
kInverseWinding FillType kWinding FillType
kInverseEvenOdd FillType kEvenOdd FillType

Parameters

fill one of: kWinding FillType, kEvenOdd FillType, kInverseWinding FillType, kInverseEvenOdd FillType

Return Value

fill, or kWinding FillType or kEvenOdd FillType if fill is inverted

Example

#### Example Output ~~~~ ConvertToNonInverseFillType(kWinding_FillType) == kWinding_FillType ConvertToNonInverseFillType(kEvenOdd_FillType) == kEvenOdd_FillType ConvertToNonInverseFillType(kInverseWinding_FillType) == kWinding_FillType ConvertToNonInverseFillType(kInverseEvenOdd_FillType) == kEvenOdd_FillType ~~~~

See Also

FillType getFillType setFillType IsInverseFillType


ConvertConicToQuads

static int ConvertConicToQuads(const SkPoint& p0, const SkPoint& p1,
                               const SkPoint& p2, SkScalar w, SkPoint pts[],
                               int pow2)

Approximates Conic with Quad array. Conic is constructed from start Point p0, control Point p1, end Point p2, and weight w. Quad array is stored in pts; this storage is supplied by caller. Maximum Quad count is 2 to the pow2. Every third point in array shares last Point of previous Quad and first Point of next Quad. Maximum pts storage size is given by: (1 + 2 * (1 << pow2)) * sizeof(SkPoint)ConvertConicToQuads returns Quad count used the approximation, which may be smaller than the number requested. Conic Weight determines the amount of influence Conic control point has on the curve. w less than one represents an elliptical section. w greater than one represents a hyperbolic section. w equal to one represents a parabolic section.

Two Quad curves are sufficient to approximate an elliptical Conic with a sweep of up to 90 degrees; in this case, set pow2 to one.

Parameters

p0 Conic start Point
p1 Conic control Point
p2 Conic end Point
w Conic weight
pts storage for Quad array
pow2 Quad count, as power of two, normally 0 to 5 (1 to 32 Quad curves)

Return Value

number of Quad curves written to pts

Example

A pair of Quad curves are drawn in red on top of the elliptical Conic curve in black. The middle curve is nearly circular. The top-right curve is parabolic, which can be drawn exactly with a single Quad.

See Also

Conic Quad


isRect

bool isRect(SkRect* rect, bool* isClosed = nullptr,
            Direction* direction = nullptr) const

Returns true if Path is equivalent to Rect when filled. If false: rect, isClosed, and direction are unchanged. If true: rect, isClosed, and direction are written to if not nullptr.

rect may be smaller than the Path bounds. Path bounds may include kMove Verb points that do not alter the area drawn by the returned rect.

Parameters

rect storage for bounds of Rect; may be nullptr
isClosed storage set to true if Path is closed; may be nullptr
direction storage set to Rect direction; may be nullptr

Return Value

true if Path contains Rect

Example

After addRect, isRect returns true. Following moveTo permits isRect to return true, but following lineTo does not. addPoly returns true even though rect is not closed, and one side of rect is made up of consecutive line segments.

Example Output

empty is not rect
addRect is rect (10, 20, 30, 40); is closed; direction CW
moveTo is rect (10, 20, 30, 40); is closed; direction CW
lineTo is not rect
addPoly is rect (0, 0, 80, 80); is not closed; direction CCW

See Also

computeTightBounds conservativelyContainsRect getBounds isConvex isLastContourClosed isNestedFillRects


isNestedFillRects

bool isNestedFillRects(SkRect rect[2], Direction dirs[2] = nullptr) const

Returns true if Path is equivalent to nested Rect pair when filled. If false, rect and dirs are unchanged. If true, rect and dirs are written to if not nullptr: setting rect[0] to outer Rect, and rect[1] to inner Rect; setting dirs[0] to Direction of outer Rect, and dirs[1] to Direction of inner Rect.

Parameters

rect storage for Rect pair; may be nullptr
dirs storage for Direction pair; may be nullptr

Return Value

true if Path contains nested Rect pair

Example

#### Example Output ~~~~ outer (7.5, 17.5, 32.5, 42.5); direction CW inner (12.5, 22.5, 27.5, 37.5); direction CCW ~~~~

See Also

computeTightBounds conservativelyContainsRect getBounds isConvex isLastContourClosed isRect


addRect

void addRect(const SkRect& rect, Direction dir = kCW_Direction)

Add Rect to Path, appending kMove Verb, three kLine Verb, and kClose Verb, starting with top-left corner of Rect; followed by top-right, bottom-right, and bottom-left if dir is kCW Direction; or followed by bottom-left, bottom-right, and top-right if dir is kCCW Direction.

Parameters

rect Rect to add as a closed contour
dir Direction to wind added contour

Example

The left Rect dashes starting at the top-left corner, to the right. The right Rect dashes starting at the top-left corner, towards the bottom.

See Also

SkCanvas::drawRect Direction


void addRect(const SkRect& rect, Direction dir, unsigned start)

Add Rect to Path, appending kMove Verb, three kLine Verb, and kClose Verb. If dir is kCW Direction, Rect corners are added clockwise; if dir is kCCW Direction, Rect corners are added counterclockwise. start determines the first corner added.

start first corner
0 top-left
1 top-right
2 bottom-right
3 bottom-left

Parameters

rect Rect to add as a closed contour
dir Direction to wind added contour
start initial corner of Rect to add

Example

The arrow is just after the initial corner and points towards the next corner appended to Path.

See Also

SkCanvas::drawRect Direction


void addRect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom,
             Direction dir = kCW_Direction)

Add Rect (left, top, right, bottom) to Path, appending kMove Verb, three kLine Verb, and kClose Verb, starting with top-left corner of Rect; followed by top-right, bottom-right, and bottom-left if dir is kCW Direction; or followed by bottom-left, bottom-right, and top-right if dir is kCCW Direction.

Parameters

left smaller x of Rect
top smaller y of Rect
right larger x of Rect
bottom larger y of Rect
dir Direction to wind added contour

Example

The left Rect dashes start at the top-left corner, and continue to the right. The right Rect dashes start at the top-left corner, and continue down.

See Also

SkCanvas::drawRect Direction


addOval

void addOval(const SkRect& oval, Direction dir = kCW_Direction)

Add Oval to path, appending kMove Verb, four kConic Verb, and kClose Verb. Oval is upright ellipse bounded by Rect oval with radii equal to half oval width and half oval height. Oval begins at (oval.fRight, oval.centerY()) and continues clockwise if dir is kCW Direction, counterclockwise if dir is kCCW Direction.

This form is identical to

Parameters

oval bounds of ellipse added
dir Direction to wind ellipse

Example

See Also

SkCanvas::drawOval Direction Oval


void addOval(const SkRect& oval, Direction dir, unsigned start)

Add Oval to Path, appending kMove Verb, four kConic Verb, and kClose Verb. Oval is upright ellipse bounded by Rect oval with radii equal to half oval width and half oval height. Oval begins at start and continues clockwise if dir is kCW Direction, counterclockwise if dir is kCCW Direction.

start Point
0 oval.centerX(), oval.fTop
1 oval.fRight, oval.centerY()
2 oval.centerX(), oval.fBottom
3 oval.fLeft, oval.centerY()

Parameters

oval bounds of ellipse added
dir Direction to wind ellipse
start index of initial point of ellipse

Example

See Also

SkCanvas::drawOval Direction Oval


addCircle

void addCircle(SkScalar x, SkScalar y, SkScalar radius,
               Direction dir = kCW_Direction)

Add Circle centered at (x, y) of size radius to Path, appending kMove Verb, four kConic Verb, and kClose Verb. Circle begins at(x + radius, y), continuing clockwise if dir is kCW Direction, and counterclockwise if dir is kCCW Direction.

Has no effect if radius is zero or negative.

Parameters

x center of Circle
y center of Circle
radius distance from center to edge
dir Direction to wind Circle

Example

See Also

SkCanvas::drawCircle Direction Circle


addArc

void addArc(const SkRect& oval, SkScalar startAngle, SkScalar sweepAngle)

Append Arc to Path, as the start of new Contour. Arc added is part of ellipse bounded by oval, from startAngle through sweepAngle. Both startAngle and sweepAngle are measured in degrees, where zero degrees is aligned with the positive x-axis, and positive sweeps extends Arc clockwise.

If sweepAngle <= -360, or sweepAngle >= 360; and startAngle modulo 90 is nearly zero, append Oval instead of Arc. Otherwise, sweepAngle values are treated modulo 360, and Arc may or may not draw depending on numeric rounding.

Parameters

oval bounds of ellipse containing Arc
startAngle starting angle of Arc in degrees
sweepAngle sweep, in degrees. Positive is clockwise; treated modulo 360

Example

The middle row of the left and right columns draw differently from the entries above and below because sweepAngle is outside of the range of +/-360, and startAngle modulo 90 is not zero.

See Also

Arc arcTo SkCanvas::drawArc


addRoundRect

void addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry,
                  Direction dir = kCW_Direction)

Append Round Rect to Path, creating a new closed Contour. Round Rect has bounds equal to rect; each corner is 90 degrees of an ellipse with radii (rx, ry). If dir is kCW Direction, Round Rect starts at top-left of the lower-left corner and winds clockwise. If dir is kCCW Direction, Round Rect starts at the bottom-left of the upper-left corner and winds counterclockwise.

If either rx or ry is too large, rx and ry are scaled uniformly until the corners fit. If rx or ry is less than or equal to zero, addRoundRect appends Rect rect to Path.

After appending, Path may be empty, or may contain: Rect, Oval, or RoundRect.

Parameters

rect bounds of Round Rect
rx x-radius of rounded corners on the Round Rect
ry y-radius of rounded corners on the Round Rect
dir Direction to wind Round Rect

Example

If either radius is zero, path contains Rect and is drawn red. If sides are only radii, path contains Oval and is drawn blue. All remaining path draws are convex, and are drawn in gray; no paths constructed from addRoundRect are concave, so none are drawn in green.

See Also

addRRect SkCanvas::drawRoundRect


void addRoundRect(const SkRect& rect, const SkScalar radii[],
                  Direction dir = kCW_Direction)

Append Round Rect to Path, creating a new closed Contour. Round Rect has bounds equal to rect; each corner is 90 degrees of an ellipse with radii from the array.

radii index location
0 x-radius of top-left corner
1 y-radius of top-left corner
2 x-radius of top-right corner
3 y-radius of top-right corner
4 x-radius of bottom-right corner
5 y-radius of bottom-right corner
6 x-radius of bottom-left corner
7 y-radius of bottom-left corner

If dir is kCW Direction, Round Rect starts at top-left of the lower-left corner and winds clockwise. If dir is kCCW Direction, Round Rect starts at the bottom-left of the upper-left corner and winds counterclockwise.

If both radii on any side of rect exceed its length, all radii are scaled uniformly until the corners fit. If either radius of a corner is less than or equal to zero, both are treated as zero.

After appending, Path may be empty, or may contain: Rect, Oval, or RoundRect.

Parameters

rect bounds of Round Rect
radii array of 8 SkScalar values, a radius pair for each corner
dir Direction to wind Round Rect

Example

See Also

addRRect SkCanvas::drawRoundRect


addRRect

void addRRect(const SkRRect& rrect, Direction dir = kCW_Direction)

Add rrect to Path, creating a new closed Contour. If dir is kCW Direction, rrect starts at top-left of the lower-left corner and winds clockwise. If dir is kCCW Direction, rrect starts at the bottom-left of the upper-left corner and winds counterclockwise.

After appending, Path may be empty, or may contain: Rect, Oval, or Round Rect.

Parameters

rrect bounds and radii of rounded rectangle
dir Direction to wind Round Rect

Example

See Also

addRoundRect SkCanvas::drawRRect


void addRRect(const SkRRect& rrect, Direction dir, unsigned start)

Add rrect to Path, creating a new closed Contour. If dir is kCW Direction, rrect winds clockwise; if dir is kCCW Direction, rrect winds counterclockwise. start determines the first point of rrect to add.

start location
0 right of top-left corner
1 left of top-right corner
2 bottom of top-right corner
3 top of bottom-right corner
4 left of bottom-right corner
5 right of bottom-left corner
6 top of bottom-left corner
7 bottom of top-left corner

After appending, Path may be empty, or may contain: Rect, Oval, or Round Rect.

Parameters

rrect bounds and radii of rounded rectangle
dir Direction to wind Round Rect
start index of initial point of Round Rect

Example

See Also

addRoundRect SkCanvas::drawRRect


addPoly

void addPoly(const SkPoint pts[], int count, bool close)

Add Contour created from Line array, adding (count - 1) Line segments. Contour added starts at pts[0], then adds a line for every additional Point in pts array. If close is true,appends kClose Verb to Path, connecting pts[count - 1] and pts[0].

If count is zero, append kMove Verb to path. Has no effect if count is less than one.

Parameters

pts array of Line sharing end and start Point
count length of Point array
close true to add Line connecting Contour end and start

Example

See Also

SkCanvas::drawPoints


Enum SkPath::AddPathMode

enum AddPathMode {
kAppend AddPathMode, 
kExtend AddPathMode, 
};

AddPathMode chooses how addPath appends. Adding one Path to another can extend the last Contour or start a new Contour.

Constants

SkPath::kAppend_AddPathMode Path Verbs, Points, and Conic_Weights are appended to destination unaltered.Since Path Verb Array begins with kMove Verb if src is not empty, this starts a new Contour.
SkPath::kExtend_AddPathMode If destination is closed or empty, start a new Contour. If destinationis not empty, add Line from Last Point to added Path first Point. Skip added Path initial kMove Verb, then append remining Verbs, Points, and Conic Weights.

Example

test is built from path, open on the top row, and closed on the bottom row. The left column uses kAppend AddPathMode; the right uses kExtend AddPathMode. The top right composition is made up of one contour; the other three have two.

See Also

addPath reverseAddPath

addPath

void addPath(const SkPath& src, SkScalar dx, SkScalar dy,
             AddPathMode mode = kAppend_AddPathMode)

Append src to Path, offset by (dx, dy).

If mode is kAppend AddPathMode, src Verb Array, Point Array, and Conic Weights are added unaltered. If mode is kExtend AddPathMode, add Line before appending Verbs, Points, and Conic Weights.

Parameters

src Path Verbs, Points, and Conic Weights to add
dx offset added to src Point Array x coordinates
dy offset added to src Point Array y coordinates
mode kAppend AddPathMode or kExtend AddPathMode

Example

See Also

AddPathMode offset reverseAddPath


void addPath(const SkPath& src, AddPathMode mode = kAppend_AddPathMode)

Append src to Path.

If mode is kAppend AddPathMode, src Verb Array, Point Array, and Conic Weights are added unaltered. If mode is kExtend AddPathMode, add Line before appending Verbs, Points, and Conic Weights.

Parameters

src Path Verbs, Points, and Conic Weights to add
mode kAppend AddPathMode or kExtend AddPathMode

Example

See Also

AddPathMode reverseAddPath


void addPath(const SkPath& src, const SkMatrix& matrix,
             AddPathMode mode = kAppend_AddPathMode)

Append src to Path, transformed by matrix. Transformed curves may have different Verbs, Points, and Conic Weights.

If mode is kAppend AddPathMode, src Verb Array, Point Array, and Conic Weights are added unaltered. If mode is kExtend AddPathMode, add Line before appending Verbs, Points, and Conic Weights.

Parameters

src Path Verbs, Points, and Conic Weights to add
matrix transform applied to src
mode kAppend AddPathMode or kExtend AddPathMode

Example

See Also

AddPathMode transform offset reverseAddPath


reverseAddPath

void reverseAddPath(const SkPath& src)

Append src to Path, from back to front. Reversed src always appends a new Contour to Path.

Parameters

src Path Verbs, Points, and Conic Weights to add

Example

See Also

AddPathMode transform offset addPath


offset

void offset(SkScalar dx, SkScalar dy, SkPath* dst) const

Offset Point Array by (dx, dy). Offset Path replaces dst. If dst is nullptr, Path is replaced by offset data.

Parameters

dx offset added to Point Array x coordinates
dy offset added to Point Array y coordinates
dst overwritten, translated copy of Path; may be nullptr

Example

See Also

addPath transform


void offset(SkScalar dx, SkScalar dy)

Offset Point Array by (dx, dy). Path is replaced by offset data.

Parameters

dx offset added to Point Array x coordinates
dy offset added to Point Array y coordinates

Example

See Also

addPath transform SkCanvas::translate()


transform

void transform(const SkMatrix& matrix, SkPath* dst) const

Transform Verb Array, Point Array, and weight by matrix. transform may change Verbs and increase their number. Transformed Path replaces dst; if dst is nullptr, original data is replaced.

Parameters

matrix Matrix to apply to Path
dst overwritten, transformed copy of Path; may be nullptr

Example

See Also

addPath offset SkCanvas::concat() SkMatrix


void transform(const SkMatrix& matrix)

Transform Verb Array, Point Array, and weight by matrix. transform may change Verbs and increase their number. Path is replaced by transformed data.

Parameters

matrix Matrix to apply to Path

Example

See Also

addPath offset SkCanvas::concat() SkMatrix


Last Point

Path is defined cumulatively, often by adding a segment to the end of last Contour. Last Point of Contour is shared as first Point of added Line or Curve. Last Point can be read and written directly with getLastPt and setLastPt.

getLastPt

bool getLastPt(SkPoint* lastPt) const

Returns Last Point on Path in lastPt. Returns false if Point Array is empty, storing (0, 0) if lastPt is not nullptr.

Parameters

lastPt storage for final Point in Point Array; may be nullptr

Return Value

true if Point Array contains one or more Points

Example

#### Example Output ~~~~ last point: 35.2786, 52.9772 ~~~~

See Also

setLastPt


setLastPt

void setLastPt(SkScalar x, SkScalar y)

Set Last Point to (x, y). If Point Array is empty, append kMove Verb to Verb Array and (x, y) to Point Array.

Parameters

x set x-coordinate of Last Point
y set y-coordinate of Last Point

Example

See Also

getLastPt


void setLastPt(const SkPoint& p)

Set the last point on the path. If no points have been added,

Parameters

p set value of Last Point

Example

See Also

getLastPt


Enum SkPath::SegmentMask

enum SegmentMask {
kLine SegmentMask = 1 << 0,
kQuad SegmentMask = 1 << 1,
kConic SegmentMask = 1 << 2,
kCubic SegmentMask = 1 << 3,
};

SegmentMask constants correspond to each drawing Verb type in Path; for instance, if Path only contains Lines, only the kLine SegmentMask bit is set.

Constants

SkPath::kLine_SegmentMask 1Set if Verb Array contains kLine Verb.
SkPath::kQuad_SegmentMask 2Set if Verb Array contains kQuad Verb. Note that conicTo may add a Quad.
SkPath::kConic_SegmentMask 4Set if Verb Array contains kConic Verb.
SkPath::kCubic_SegmentMask 8Set if Verb Array contains kCubic Verb.

Example

When conicTo has a weight of one, Quad is added to Path.

Example Output

Path kConic_SegmentMask is clear
Path kQuad_SegmentMask is set

See Also

getSegmentMasks Verb

getSegmentMasks

uint32_t getSegmentMasks() const

Returns a mask, where each set bit corresponds to a SegmentMask constant if Path contains one or more Verbs of that type. Returns zero if Path contains no Lines, or Curves: Quads, Conics, or Cubics.

getSegmentMasks returns a cached result; it is very fast.

Return Value

SegmentMask bits or zero

Example

#### Example Output ~~~~ mask quad set ~~~~

See Also

getSegmentMasks Verb


contains

bool contains(SkScalar x, SkScalar y) const

Returns true if the point (x, y) is contained by Path, taking into account FillType.

FillType contains returns true if Point is enclosed by
kWinding FillType a non-zero sum of Contour Directions.
kEvenOdd FillType an odd number of Contours.
kInverseWinding FillType a zero sum of Contour Directions.
kInverseEvenOdd FillType and even number of Contours.

Parameters

x x-coordinate of containment test
y y-coordinate of containment test

Return Value

true if Point is in Path

Example

See Also

conservativelyContainsRect Fill Type Op


dump

void dump(SkWStream* stream, bool forceClose, bool dumpAsHex) const

Writes text representation of Path to stream. If stream is nullptr, dump writes to standard output. Set forceClose to true to get edges used to fill Path. Set dumpAsHex true to generate exact binary representations of floating point numbers used in Point Array and Conic Weights.

Parameters

stream writable Stream receiving Path text representation; may be nullptr
forceClose true if missing kClose Verb is output
dumpAsHex true if SkScalar values are written as hexadecimal

Example

#### Example Output ~~~~ path.setFillType(SkPath::kWinding_FillType); path.moveTo(0, 0); path.quadTo(20, 30, 40, 50); path.setFillType(SkPath::kWinding_FillType); path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.quadTo(SkBits2Float(0x41a00000), SkBits2Float(0x41f00000), SkBits2Float(0x42200000), SkBits2Float(0x42480000)); // 20, 30, 40, 50 path.setFillType(SkPath::kWinding_FillType); path.moveTo(0, 0); path.quadTo(20, 30, 40, 50); path.lineTo(0, 0); path.close(); path.setFillType(SkPath::kWinding_FillType); path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.quadTo(SkBits2Float(0x41a00000), SkBits2Float(0x41f00000), SkBits2Float(0x42200000), SkBits2Float(0x42480000)); // 20, 30, 40, 50 path.lineTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.close(); ~~~~

See Also

SkRect::dump() SkRRect::dump() SkPathMeasure::dump()


void dump() const

Writes text representation of Path to standard output. The representation may be directly compiled as C++ code. Floating point values are written with limited precision; it may not be possible to reconstruct original Path from output.

Example

#### Example Output ~~~~ path.setFillType(SkPath::kWinding_FillType); path.moveTo(0, 0); path.lineTo(0.857143f, 0.666667f); path is not equal to copy ~~~~

See Also

dumpHex SkRect::dump() SkRRect::dump() SkPathMeasure::dump() writeToMemory


dumpHex

void dumpHex() const

Writes text representation of Path to standard output. The representation may be directly compiled as C++ code. Floating point values are written in hexadecimal to preserve their exact bit pattern. The output reconstructs the original Path.

Use instead of dump when submittingbug reports against Skia.

Example

#### Example Output ~~~~ path.setFillType(SkPath::kWinding_FillType); path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0 path.lineTo(SkBits2Float(0x3f5b6db7), SkBits2Float(0x3f2aaaab)); // 0.857143f, 0.666667f path is equal to copy ~~~~

See Also

dump


writeToMemory

size_t writeToMemory(void* buffer) const

Writes Path to buffer, returning the number of bytes written. Pass nullptr to obtain the storage size.

Writes Fill Type, Verb Array, Point Array, Conic Weight, and additionally writes computed information like Convexity and bounds.

Use only be used in concert with readFromMemory; the format used for Path in memory is not guaranteed.

Parameters

buffer storage for Path; may be nullptr

Return Value

size of storage required for Path; always a multiple of 4

Example

#### Example Output ~~~~ path is equal to copy ~~~~

See Also

serialize readFromMemory dump dumpHex


serialize

sk_sp<SkData> serialize() const

Write Path to buffer, returning the buffer written to, wrapped in Data.

serialize writes Fill Type, Verb Array, Point Array, Conic Weight, and additionally writes computed information like Convexity and bounds.

serialize should only be used in concert with readFromMemory. The format used for Path in memory is not guaranteed.

Return Value

Path data wrapped in Data buffer

Example

#### Example Output ~~~~ path is equal to copy ~~~~

See Also

writeToMemory readFromMemory dump dumpHex


readFromMemory

size_t readFromMemory(const void* buffer, size_t length)

Initializes Path from buffer of size length. Returns zero if the buffer is data is inconsistent, or the length is too small.

Reads Fill Type, Verb Array, Point Array, Conic Weight, and additionally reads computed information like Convexity and bounds.

Used only in concert with writeToMemory; the format used for Path in memory is not guaranteed.

Parameters

buffer storage for Path
length buffer size in bytes; must be multiple of 4

Return Value

number of bytes read, or zero on failure

Example

#### Example Output ~~~~ length = 60; returned by readFromMemory = 0 length = 68; returned by readFromMemory = 64 ~~~~

See Also

writeToMemory


Generation ID

Generation ID provides a quick way to check if Verb Array, Point Array, or Conic Weight has changed. Generation ID is not a hash; identical Paths will not necessarily have matching Generation IDs.

Empty Paths have a Generation ID of one.

getGenerationID

uint32_t getGenerationID() const

Returns a non-zero, globally unique value. A different value is returned if Verb Array, Point Array, or Conic Weight changes.

Setting Fill Type does not change Generation ID.

Each time the path is modified, a different Generation ID will be returned.

Return Value

non-zero, globally unique value

Example

#### Example Output ~~~~ empty genID = 1 1st lineTo genID = 2 empty genID = 1 2nd lineTo genID = 3 ~~~~

See Also

operator==(const SkPath& a, const SkPath& b)


isValid

bool isValid() const

Returns if Path data is consistent. Corrupt Path data is detected if internal values are out of range or internal storage does not match array dimensions.

Return Value

true if Path data is consistent


pathRefIsValid

bool pathRefIsValid() const

Returns if Path data is consistent.

To be deprecated soon.

Return Value

true if Path data is consistent


Class SkPath::Iter

Iterates through Verb Array, and associated Point Array and Conic Weight. Provides options to treat open Contours as closed, and to ignore degenerate data.

class Iter {
public:
Iter();
Iter(const SkPath& path, bool forceClose);
void setPath(const SkPath& path, bool forceClose);
Verb next(SkPoint pts[4], bool doConsumeDegenerates = true, bool exact = false);
SkScalar conicWeight const;
bool isCloseLine const;
bool isClosedContour const;
};

Example

Ignoring the actual Verbs and replacing them with Quads rounds the path of the glyph.

See Also

RawIter

Iter

Iter()

Initializes Iter with an empty Path. next on Iter returns kDone Verb. Call setPath to initialize Iter at a later time.

Return Value

Iter of empty Path

Example

#### Example Output ~~~~ iter is done iter is done ~~~~

See Also

setPath


Iter(const SkPath& path, bool forceClose)

Sets Iter to return elements of Verb Array, Point Array, and Conic Weight in path. If forceClose is true, Iter will add kLine Verb and kClose Verb after each open Contour. path is not altered.

Parameters

path Path to iterate
forceClose true if open Contours generate kClose Verb

Return Value

Iter of path

Example

#### Example Output ~~~~ open: kMove_Verb {0, 0}, kQuad_Verb {0, 0}, {10, 20}, {30, 40}, kDone_Verb closed: kMove_Verb {0, 0}, kQuad_Verb {0, 0}, {10, 20}, {30, 40}, kLine_Verb {30, 40}, {0, 0}, kClose_Verb {0, 0}, kDone_Verb ~~~~

See Also

setPath


setPath

void setPath(const SkPath& path, bool forceClose)

Sets Iter to return elements of Verb Array, Point Array, and Conic Weight in path. If forceClose is true, Iter will add kLine Verb and kClose Verb after each open Contour. path is not altered.

Parameters

path Path to iterate
forceClose true if open Contours generate kClose Verb

Example

#### Example Output ~~~~ quad open: kMove_Verb {0, 0}, kQuad_Verb {0, 0}, {10, 20}, {30, 40}, kDone_Verb conic closed: kMove_Verb {0, 0}, kConic_Verb {0, 0}, {1, 2}, {3, 4}, weight = 0.5 kLine_Verb {3, 4}, {0, 0}, kClose_Verb {0, 0}, kDone_Verb ~~~~

See Also

Iter(const SkPath& path, bool forceClose)


next

Verb next(SkPoint pts[4], bool doConsumeDegenerates = true, bool exact = false)

Returns next Verb in Verb Array, and advances Iter. When Verb Array is exhausted, returns kDone Verb.

Zero to four Points are stored in pts, depending on the returned Verb.

If doConsumeDegenerates is true, skip consecutive kMove Verb entries, returning only the last in the series; and skip very small Lines, Quads, and Conics; and skip kClose Verb following kMove Verb. if doConsumeDegenerates is true and exact is true, only skip Lines, Quads, and Conics with zero lengths.

Parameters

pts storage for Point data describing returned Verb
doConsumeDegenerates if true, skip degenerate Verbs
exact skip zero length curves

Return Value

next Verb from Verb Array

Example

skip degenerate skips the first in a kMove Verb pair, the kMove Verb followed by the kClose Verb, the zero length Line and the very small Line. skip degenerate if exact skips the same as skip degenerate, but shows the very small Line. skip none shows all of the Verbs and Points in Path.

Example Output

skip degenerate:
kMove_Verb {20, 20},
kQuad_Verb {20, 20}, {10, 20}, {30, 40},
kDone_Verb
skip degenerate if exact:
kMove_Verb {20, 20},
kQuad_Verb {20, 20}, {10, 20}, {30, 40},
kMove_Verb {30, 30},
kLine_Verb {30, 30}, {30.00001, 30},
kDone_Verb
skip none:
kMove_Verb {10, 10},
kMove_Verb {20, 20},
kQuad_Verb {20, 20}, {10, 20}, {30, 40},
kMove_Verb {1, 1},
kClose_Verb {1, 1},
kMove_Verb {30, 30},
kLine_Verb {30, 30}, {30, 30},
kMove_Verb {30, 30},
kLine_Verb {30, 30}, {30.00001, 30},
kDone_Verb

See Also

Verb IsLineDegenerate IsCubicDegenerate IsQuadDegenerate


conicWeight

SkScalar conicWeight() const

Returns Conic Weight if next returned kConic Verb.

If next has not been called, or next did not return kConic Verb, result is undefined.

Return Value

Conic Weight for Conic Points returned by next

Example

#### Example Output ~~~~ first verb is move next verb is conic conic points: {0,0}, {1,2}, {3,4} conic weight: 0.5 ~~~~

See Also

Conic Weight


isCloseLine

bool isCloseLine() const

Returns true if last kLine Verb returned by next was generated by kClose Verb. When true, the end point returned by next is also the start point of Contour.

If next has not been called, or next did not return kLine Verb, result is undefined.

Return Value

true if last kLine Verb was generated by kClose Verb

Example

#### Example Output ~~~~ 1st verb is move moveTo point: {6,7} 2nd verb is conic 3rd verb is line line points: {3,4}, {6,7} line generated by close 4th verb is close ~~~~

See Also

close


isClosedContour

bool isClosedContour() const

Returns true if subsequent calls to next return kClose Verb before returning kMove Verb. if true, Contour Iter is processing may end with kClose Verb, or Iter may have been initialized with force close set to true.

Return Value

true if Contour is closed

Example

#### Example Output ~~~~ without close(), forceClose is false: isClosedContour returns false with close(), forceClose is false: isClosedContour returns true without close(), forceClose is true : isClosedContour returns true with close(), forceClose is true : isClosedContour returns true ~~~~

See Also

Iter(const SkPath& path, bool forceClose)


Class SkPath::RawIter

Iterates through Verb Array, and associated Point Array and Conic Weight. Verb Array, Point Array, and Conic Weight are returned unaltered.

class RawIter {
public:
RawIter();
RawIter(const SkPath& path);
void setPath(const SkPath& path);
Verb next(SkPoint pts[4]);
Verb peek const;
SkScalar conicWeight const;
}

RawIter

RawIter()

Initializes RawIter with an empty Path. next on RawIter returns kDone Verb. Call setPath to initialize Iter at a later time.

Return Value

RawIter of empty Path


RawIter(const SkPath& path)

Sets RawIter to return elements of Verb Array, Point Array, and Conic Weight in path.

Parameters

path Path to iterate

Return Value

RawIter of path


setPath

void setPath(const SkPath& path)

Sets Iter to return elements of Verb Array, Point Array, and Conic Weight in path.

Parameters

path Path to iterate

next

Verb next(SkPoint pts[4])

Returns next Verb in Verb Array, and advances RawIter. When Verb Array is exhausted, returns kDone Verb. Zero to four Points are stored in pts, depending on the returned Verb.

Parameters

pts storage for Point data describing returned Verb

Return Value

next Verb from Verb Array

Example

#### Example Output ~~~~ kMove_Verb {50, 60}, kQuad_Verb {50, 60}, {10, 20}, {30, 40}, kClose_Verb {50, 60}, kMove_Verb {50, 60}, kLine_Verb {50, 60}, {30, 30}, kConic_Verb {30, 30}, {1, 2}, {3, 4}, weight = 0.5 kCubic_Verb {3, 4}, {-1, -2}, {-3, -4}, {-5, -6}, kDone_Verb ~~~~

See Also

peek


peek

Verb peek() const

Returns next Verb, but does not advance RawIter.

Return Value

next Verb from Verb Array

Example

#### Example Output ~~~~ #Volatile peek Move == verb Move peek Quad == verb Quad peek Conic == verb Conic peek Cubic == verb Cubic peek Done == verb Done peek Done == verb Done ~~~~

See Also

next


conicWeight

SkScalar conicWeight() const

Returns Conic Weight if next returned kConic Verb.

If next has not been called, or next did not return kConic Verb, result is undefined.

Return Value

Conic Weight for Conic Points returned by next

Example

#### Example Output ~~~~ first verb is move next verb is conic conic points: {0,0}, {1,2}, {3,4} conic weight: 0.5 ~~~~

See Also

Conic Weight