

		Skia
	
	
			
				
				
				
				
				
				
				
				
				About
			
	
				
				
				
				
				
				
				
				
				Releases
			
	
				
				
				
				
				
				
				
				
				Documentation
			
	
				
				
				
				
				
				
				
				
				Contributing
			
	
				
				
				
				
				
				
				
				
				Download
			
	
				
				
				
				
				
				
				
				
				Developers
			

	

	

 	
 Documentation
 	
 User Documentation
 	
 Samples and Tutorials
 	
 Skia Viewer

	
 Using Skia's PDF Backend

	
 Releases

	
 Library Modules
 	
 Skottie - Lottie Animation Player

	
 CanvasKit - Skia + WebAssembly

	
 PathKit - Geometry in the Browser

	
 CanvasKit - Quickstart

	
 API Reference and Overview
 	
 SkCanvas Overview

	
 SkCanvas Creation

	
 SkBlendMode Overview

	
 SkPath Overview

	
 SkPaint Overview

	
 Specialized Builds
 	
 ANGLE

	
 Vulkan

	
 Download

	
 How to build Skia

	
 Coordinates

	
 Issue Tracking

	
 Privacy

	
 Skia Color Management

	
 SkSL

	
 Tips & FAQ

	
 Developers
 	
 Contributing
 	
 Coding Style Guidelines

	
 Commit Queue Keywords

	
 How to revert a CL

	
 How to submit a patch

	
 The Skia Directory

	
 Using Bazel

	
 Tools
 	
 Code Search

	
 Debug Visualization

	
 Debugging DM on Android

	
 Markdown

	
 SK CLI Tool

	
 Skia Debugger

	
 Tracing Skia Execution

	
 Testing
 	
 Correctness Testing

	
 Downloading Isolates

	
 Fonts and GM Tests

	
 Fuzzing

	
 MSAN, ASAN, & TSAN

	
 Skia Automated Testing

	
 Skia Gold

	
 Skia Perf

	
 Skia Swarming Bots

	
 SkQP

	
 Testing on iOS

	
 Writing Skia Tests

	
 Design Documents
 	
 Analytic Anti-Alias

	
 Canvas2D Text Extensions

	
 PDF Theory of Operation

	
 Shaped Text

	
 Text API Overview

	
 Text Properties API

	
 The Raster Tragedy in Skia

	
 Two-point Conical Gradient

	
 Presentations
 	
 Path Ops

	
 Skia in Chrome
 	
 Blink layout tests

	
 Chrome changes

	
 Multiple repo Chromium trybots

	
 Working in a Chromium repo

	
 Skia Gardener Documentation
 	
 Android Gardener Documentation

	
 GPU Gardener Documentation

	
 Infra Gardener Documentation

	
 Internal Links

	
 Project Roles

 	Typical usage of the PDF backend
	PDF Objects and Document Structure
	PDF drawing
	Interned objects
	Graphic States
	Clip and Transform
	Generating a content stream
	Drawing details
 	Layers
	Fonts
	Shaders
	Xfer modes

	Known issues

	
		

	
		

	

 	
 Documentation

	
 Developers

	
 Design Documents

	
 PDF Theory of Operation

	PDF Theory of Operation

	
	
		
		
			
				

			
				

			
		
		
	
	
Internally, SkPDFDocument and SkPDFDevice represents PDF documents and pages.
This document describes how the backend operates, but these interfaces are not
part of the public API and are subject to perpetual change.

See Using Skia’s PDF Backend to find out how to use
SkPDF as a client calling Skia’s public API.

Typical usage of the PDF backend

SkPDFDevice is the main interface to the PDF backend. This child of SkDevice can
be set on an SkCanvas and drawn to. Once drawing to the canvas is complete
(SkDocument::onEndPage() is called), the device’s content and resources are
added to the SkPDFDocument that owns the device. A new SkPDFDevice should be
created for each page or layer desired in the document. After all the pages have
been added to the document, SkPDFDocument::onClose() is called to finish
serializing the PDF file.

PDF Objects and Document Structure

Background: The PDF file format has a header, a set of objects and then a
footer that contains a table of contents for all of the objects in the document
(the cross-reference table). The table of contents lists the specific byte
position for each object. The objects may have references to other objects and
the ASCII size of those references is dependent on the object number assigned to
the referenced object; therefore we can’t calculate the table of contents until
the size of objects is known, which requires assignment of object numbers. The
document uses SkWStream::bytesWritten() to query the offsets of each object and
build the cross-reference table.

Furthermore, PDF files can support a linearized mode, where objects are in a
specific order so that pdf-viewers can more easily retrieve just the objects
they need to display a specific page, i.e. by byte-range requests over the web.
Linearization also requires that all objects used or referenced on the first
page of the PDF have object numbers before the rest of the objects.
Consequently, before generating a linearized PDF, all objects, their sizes, and
object references must be known. Skia has no plans to implement linearized PDFs.

%PDF-1.4
…objects...
xref
0 31 % Total number of entries in the table of contents.
0000000000 65535 f
0000210343 00000 n
…
0000117055 00000 n
trailer
<</Size 31 /Root 1 0 R>>
startxref
210399 % Byte offset to the start of the table of contents.
%%EOF

The the virtual class SkPDFObject are used to manage the needs of the file
format. Any object that will represent a PDF object must inherit from
SkPDFObject and implement the methods to generate the binary representation and
report any other SkPDFObjects used as resources. SkPDFTypes.h defines most of
the basic PDF object types: bool, int, scalar, string, name, array, dictionary,
and stream. (A stream is a dictionary containing at least a Length entry
followed by the data of the stream.)

Streams are now handled in a slightly different way. The SkPDFStreamOut()
function compresses and serializes the binary data immediately instead of
creating a new object.

All of these PDF object types except the stream type can be used in both a
direct and an indirect fashion, i.e. an array can have an int or a dictionary as
an inline entry, which does not require an object number. The stream type,
cannot be inlined and must be referred to with an object reference. Most of the
time, other objects types can be referred to with an object reference, but there
are specific rules in the PDF specification that requires an inline reference in
some place or an indirect reference in other places. All indirect objects must
have an object number assigned.

	bools: true false
	ints: 42 0 -1
	scalars: 0.001
	strings: (strings are in parentheses or byte encoded) <74657374>
	name: /Name /Name#20with#20spaces
	array: [/Foo 42 (arrays can contain multiple types)]
	dictionary: <</Key1 (value1) /key2 42>>
	indirect object:

5 0 obj (An indirect string. Indirect objects have an object number and a generation number, Skia always uses generation 0 objects) endobj
	object reference: 5 0 R
	stream:
<</Length 56>> stream ...stream contents can be arbitrary, including binary... endstream

Indirect objects are either:

	
Serialized as soon as they are needed, and a new SkPDFIndirectReference is
returned, or

	
Serialized later, but reserve a document-unique SkPDFIndirectReference to
allow other objects to refer to it.

Example document:

%PDF-1.4
2 0 obj <<
 /Type /Catalog
 /Pages 1 0 R
>>
endobj
3 0 obj <<
 /Type /Page
 /Parent 1 0 R
 /Resources <>
 /MediaBox [0 0 612 792]
 /Contents 4 0 R
>>
endobj
4 0 obj <> stream
endstream
endobj
1 0 obj <<
 /Type /Pages
 /Kids [3 0 R]
 /Count 1
>>
endobj
xref
0 5
0000000000 65535 f
0000000236 00000 n
0000000009 00000 n
0000000062 00000 n
0000000190 00000 n
trailer
<</Size 5 /Root 2 0 R>>
startxref
299
%%EOF

PDF drawing

Most drawing in PDF is specified by the text of a stream, referred to as a
content stream. The syntax of the content stream is different than the syntax of
the file format described above and is much closer to PostScript in nature. The
commands in the content stream tell the PDF interpreter to draw things, like a
rectangle (x y w h re), an image, or text, or to do meta operations like set
the drawing color, apply a transform to the drawing coordinates, or clip future
drawing operations. The page object that references a content stream has a list
of resources that can be used in the content stream using the dictionary name to
reference the resources. Resources are things like font objects, images objects,
graphic state objects (a set of meta operations like miter limit, line width,
etc). Because of a mismatch between Skia and PDF’s support for transparency
(which will be explained later), SkPDFDevice records each drawing operation into
an internal structure (ContentEntry) and only when the content stream is needed
does it flatten that list of structures into the final content stream.

4 0 obj <<
 /Type /Page
 /Resources <<
 /Font <</F1 9 0 R>>
 /XObject <</Image1 22 0 R /Image2 73 0 R>>
 >>
 /Content 5 0 R
>> endobj

5 0 obj <</Length 227>> stream
% In the font specified in object 9 and a height
% of 12 points, at (72, 96) draw ‘Hello World.’
BT
 /F1 12 Tf
 72 96 Td
 (Hello World) Tj
ET
% Draw a filled rectange.
200 96 72 72 re B
...
endstream
endobj

Interned objects

There are a number of high level PDF objects (like fonts, graphic states, etc)
that are likely to be referenced multiple times in a single PDF. To ensure that
there is only one copy of each object, the SkPDFDocument holds on to a mapping
from type-specific keys onto the SkPDFIndirectReference for these objects.

Graphic States

PDF has a number of parameters that affect how things are drawn. The ones that
correspond to drawing options in Skia are: color, alpha, line cap, line join
type, line width, miter limit, and xfer/blend mode (see later section for xfer
modes). With the exception of color, these can all be specified in a single pdf
object, represented by the SkPDFGraphicState class. A simple command in the
content stream can then set the drawing parameters to the values specified in
that graphic state object. PDF does not allow specifying color in the graphic
state object, instead it must be specified directly in the content stream.
Similarly the current font and font size are set directly in the content stream.

6 0 obj <<
 /Type /ExtGState
 /CA 1 % Opaque - alpha = 1
 /LC 0 % Butt linecap
 /LJ 0 % Miter line-join
 /LW 2 % Line width of 2
 /ML 6 % Miter limit of 6
 /BM /Normal % Blend mode is normal i.e. source over
>>
endobj

Clip and Transform

Similar to Skia, PDF allows drawing to be clipped or transformed. However, there
are a few caveats that affect the design of the PDF backend. PDF does not
support perspective transforms (perspective transform are treated as identity
transforms). Clips, however, have more issues to contend with. PDF clips cannot
be directly unapplied or expanded. i.e. once an area has been clipped off, there
is no way to draw to it. However, PDF provides a limited depth stack for the PDF
graphic state (which includes the drawing parameters mentioned above in the
Graphic States section as well as the clip and transform). Therefore to undo a
clip, the PDF graphic state must be pushed before the clip is applied, then
popped to revert to the state of the graphic state before the clip was applied.

As the canvas makes drawing calls into SkPDFDevice, the active transform, clip
region, and clip stack are stored in a ContentEntry structure. Later, when the
ContentEntry structures are flattened into a valid PDF content stream, the
transforms and clips are compared to decide on an efficient set of operations to
transition between the states needed. Currently, a local optimization is used,
to figure out the best transition from one state to the next. A global
optimization could improve things by more effectively using the graphics state
stack provided in the PDF format.

Generating a content stream

For each draw call on an SkPDFDevice, a new ContentEntry is created, which
stores the matrix, clip region, and clip stack as well as the paint parameters.
Most of the paint parameters are bundled into an SkPDFGraphicState (interned)
with the rest (color, font size, etc) explicitly stored in the ContentEntry.
After populating the ContentEntry with all the relevant context, it is compared
to the the most recently used ContentEntry. If the context matches, then the
previous one is appended to instead of using the new one. In either case, with
the context populated into the ContentEntry, the appropriate draw call is
allowed to append to the content stream snippet in the ContentEntry to affect
the core of the drawing call, i.e. drawing a shape, an image, text, etc.

When all drawing is complete, SkPDFDocument::onEndPage() will call
SkPDFDevice::content() to request the complete content stream for the page. The
first thing done is to apply the initial transform specified in part in the
constructor, this transform takes care of changing the coordinate space from an
origin in the lower left (PDF default) to the upper left (Skia default) as well
as any translation or scaling requested by the user (i.e. to achieve a margin or
scale the canvas). Next (well almost next, see the next section), a clip is
applied to restrict drawing to the content area (the part of the page inside the
margins) of the page. Then, each ContentEntry is applied to the content stream
with the help of a helper class, GraphicStackState, which tracks the state of
the PDF graphics stack and optimizes the output. For each ContentEntry, commands
are emitted to the final content entry to update the clip from its current state
to the state specified in the ContentEntry, similarly the Matrix and drawing
state (color, line joins, etc) are updated, then the content entry fragment (the
actual drawing operation) is appended.

Drawing details

Certain objects have specific properties that need to be dealt with. Images,
layers (see below), and fonts assume the standard PDF coordinate system, so we
have to undo any flip to the Skia coordinate system before drawing these
entities. We don’t currently support inverted paths, so filling an inverted path
will give the wrong result (issue 241). PDF doesn’t
draw zero length lines that have butt of square caps, so that is emulated.

Layers

PDF has a higher level object called a form x-object (form external object) that
is basically a PDF page, with resources and a content stream, but can be
transformed and drawn on an existing page. This is used to implement layers.
SkPDFDevice has a method, makeFormXObjectFromDevice(), which uses the
SkPDFDevice::content() method to construct a form x-object from the the device.
SkPDFDevice::drawDevice() works by creating a form x-object of the passed device
and then drawing that form x-object in the root device. There are a couple
things to be aware of in this process. As noted previously, we have to be aware
of any flip to the coordinate system - flipping it an even number of times will
lead to the wrong result unless it is corrected for. The SkClipStack passed to
drawing commands includes the entire clip stack, including the clipping
operations done on the base layer. Since the form x-object will be drawn as a
single operation onto the base layer, we can assume that all of those clips are
in effect and need not apply them within the layer.

Fonts

There are many details for dealing with fonts, so this document will only talk
about some of the more important ones. A couple short details:

	We can’t assume that an arbitrary font will be available at PDF view time, so
we embed all fonts in accordance with modern PDF guidelines.
	Most fonts these days are TrueType fonts, so this is where most of the effort
has been concentrated.
	Because Skia may only be given a glyph-id encoding of the text to render and
there is no perfect way to reverse the encoding, the PDF backend always uses
the glyph-id encoding of the text.

Type1/Type3 fonts

Linux supports Type1 fonts, but Windows and Mac seem to lack the functionality
required to extract the required information from the font without parsing the
font file. When a non TrueType font is used any any platform (except for Type1
on Linux), it is encoded as a Type3 font. In this context, a Type3 font is an
array of form x-objects (content streams) that draw each glyph of the font. No
hinting or kerning information is included in a Type3 font, just the shape of
each glyph. Any font that has the do-not embed copy protection bit set will also
get embedded as a Type3 font. From what I understand, shapes are not
copyrightable, but programs are, so by stripping all the programmatic
information and only embedding the shape of the glyphs we are honoring the
do-not embed bit as much as required by law.

PDF only supports an 8-bit encoding for Type1 or Type3 fonts. However, they can
contain more than 256 glyphs. The PDF backend handles this by segmenting the
glyphs into groups of 255 (glyph id 0 is always the unknown glyph) and
presenting the font as multiple fonts, each with up to 255 glyphs.

Font subsetting

Many fonts, especially fonts with CJK support are fairly large, so it is
desirable to subset them. Chrome uses the SFNTLY package to provide subsetting
support to Skia for TrueType fonts.

Shaders

Skia has two types of predefined shaders, image shaders and gradient shaders. In
both cases, shaders are effectively positioned absolutely, so the initial
position and bounds of where they are visible is part of the immutable state of
the shader object. Each of the Skia’s tile modes needs to be considered and
handled explicitly. The image shader we generate will be tiled, so tiling is
handled by default. To support mirroring, we draw the image, reversed, on the
appropriate axis, or on both axes plus a fourth in the vacant quadrant. For
clamp mode, we extract the pixels along the appropriate edge and stretch the
single pixel wide/long image to fill the bounds. For both x and y in clamp mode,
we fill the corners with a rectangle of the appropriate color. The composed
shader is then rotated or scaled as appropriate for the request.

Gradient shaders are handled purely mathematically. First, the matrix is
transformed so that specific points in the requested gradient are at pre-defined
locations, for example, the linear distance of the gradient is always normalized
to one. Then, a type 4 PDF function is created that achieves the desired
gradient. A type 4 function is a function defined by a restricted postscript
language. The generated functions clamp at the edges so if the desired tiling
mode is tile or mirror, we have to add a bit more postscript code to map any
input parameter into the 0-1 range appropriately. The code to generate the
postscript code is somewhat obtuse, since it is trying to generate optimized
(for space) postscript code, but there is a significant number of comments to
explain the intent.

Xfer modes

PDF supports some of the xfer modes used in Skia directly. For those, it is
simply a matter of setting the blend mode in the graphic state to the
appropriate value (Normal/SrcOver, Multiply, Screen, Overlay, Darken, Lighten,
!ColorDodge, ColorBurn, HardLight, SoftLight, Difference, Exclusion). Aside from
the standard SrcOver mode, PDF does not directly support the porter-duff xfer
modes though. Most of them (Clear, SrcMode, DstMode, DstOver, SrcIn, DstIn,
SrcOut, DstOut) can be emulated by various means, mostly by creating form
x-objects out of part of the content and drawing it with a another form x-object
as a mask. I have not figured out how to emulate the following modes: SrcATop,
DstATop, Xor, Plus.

At the time of writing [2012-06-25], I have a
CL outstanding to fix a misunderstanding I had about the meaning of some of the emulated modes.
I will describe the system with this change applied.

First, a bit of terminology and definition. When drawing something with an
emulated xfer mode, what’s already drawn to the device is called the destination
or Dst, and what’s about to be drawn is the source or Src. Src (and Dst) can
have regions where it is transparent (alpha equals zero), but it also has an
inherent shape. For most kinds of drawn objects, the shape is the same as where
alpha is not zero. However, for things like images and layers, the shape is the
bounds of the item, not where the alpha is non-zero. For example, a 10x10 image,
that is transparent except for a 1x1 dot in the center has a shape that is
10x10. The xfermodes gm test demonstrates the interaction between shape and
alpha in combination with the port-duff xfer modes.

The clear xfer mode removes any part of Dst that is within Src’s shape. This is
accomplished by bundling the current content of the device (Dst) into a single
entity and then drawing that with the inverse of Src’s shape used as a mask (we
want Dst where Src isn’t). The implementation of that takes a couple more steps.
You may have to refer back to
the content stream section. For any draw call, a
ContentEntry is created through a method called
SkPDFDevice::setUpContentEntry(). This method examines the xfer modes in effect
for that drawing operation and if it is an xfer mode that needs emulation, it
creates a form x-object from the device, i.e. creates Dst, and stores it away
for later use. This also clears all of that existing ContentEntry’s on that
device. The drawing operation is then allowed to proceed as normal (in most
cases, see note about shape below), but into the now empty device. Then, when
the drawing operation in done, a complementary method is
called,SkPDFDevice::finishContentEntry(), which takes action if the current xfer
mode is emulated. In the case of Clear, it packages what was just drawn into
another form x-object, and then uses the Src form x-object, an invert function,
and the Dst form x-object to draw Dst with the inverse shape of Src as a mask.
This works well when the shape of Src is the same as the opaque part of the
drawing, since PDF uses the alpha channel of the mask form x-object to do
masking. When shape doesn’t match the alpha channel, additional action is
required. The drawing routines where shape and alpha don’t match, set state to
indicate the shape (always rectangular), which finishContentEntry uses. The
clear xfer mode is a special case; if shape is needed, then Src isn’t used, so
there is code to not bother drawing Src if shape is required and the xfer mode
is clear.

SrcMode is clear plus Src being drawn afterward. DstMode simply omits drawing
Src. DstOver is the same as SrcOver with Src and Dst swapped - this is
accomplished by inserting the new ContentEntry at the beginning of the list of
ContentEntry’s in setUpContentEntry instead of at the end. SrcIn, SrcOut, DstIn,
DstOut are similar to each, the difference being an inverted or non-inverted
mask and swapping Src and Dst (or not). SrcIn is SrcMode with Src drawn with Dst
as a mask. SrcOut is like SrcMode, but with Src drawn with an inverted Dst as a
mask. DstIn is SrcMode with Dst drawn with Src as a mask. Finally, DstOut is
SrcMode with Dst draw with an inverted Src as a mask.

Known issues

	issue 249 SrcAtop Xor, and Plus xfer modes are not
supported.
	issue 240 drawVerticies is not implemented.
	issue 244 Mostly, only TTF fonts are directly
supported. (User metrics show that almost all fonts are truetype.)
	issue 260 Page rotation is accomplished by
specifying a different size page instead of including the appropriate rotation
annotation.

	
	
	

	

	

 © 2024 Google All Rights Reserved
 Privacy Policy
	
		About Skia

	

